cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097075 Expansion of g.f. (1-x-x^2)/(1-x-3*x^2-x^3).

Original entry on oeis.org

1, 0, 2, 3, 9, 20, 50, 119, 289, 696, 1682, 4059, 9801, 23660, 57122, 137903, 332929, 803760, 1940450, 4684659, 11309769, 27304196, 65918162, 159140519, 384199201, 927538920, 2239277042, 5406093003, 13051463049, 31509019100, 76069501250
Offset: 0

Views

Author

Paul Barry, Jul 22 2004

Keywords

Comments

Counts closed walks of length n at a vertex of a triangle, to which a loop has been added at one of the other vertices.
a(n) is the top left entry of the n-th power of the 3 X 3 matrix [0, 1, 1; 1, 1, 1; 1, 1, 0] or of the 3 X 3 matrix [0, 1, 1; 1, 0, 1; 1, 1, 1].

Crossrefs

Programs

  • Magma
    [(Evaluate(DicksonFirst(n,-1), 2) +2*(-1)^n)/4: n in [0..40]]; // G. C. Greubel, Aug 18 2022
    
  • Mathematica
    LinearRecurrence[{1,3,1}, {1,0,2}, 41] (* or *) Table[(LucasL[n,2] +2*(-1)^n)/4, {n,0,40}] (* G. C. Greubel, Aug 18 2022 *)
  • PARI
    Vec((1-x-x^2)/(1-x-3*x^2-x^3) + O(x^50)) \\ Michel Marcus, Mar 25 2014
    
  • SageMath
    [(lucas_number2(n,2,-1) +2*(-1)^n)/4 for n in (0..40)] # G. C. Greubel, Aug 18 2022

Formula

a(n) = ((1+sqrt(2))^n + (1-sqrt(2))^n + 2*(-1)^n)/4.
a(n) = a(n-1) + 3*a(n-2) + a(n-3).
a(n) = (1/2)*((-1)^n + Sum_{k=0..floor(n/2)} binomial(n, 2*k)*2^k).
a(n) = ((-1)^n + A001333(n))/2.
E.g.f.: (cosh(x) + exp(x)*cosh(sqrt(2)*x) - sinh(x))/2. - Stefano Spezia, Mar 31 2024