cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097110 Expansion of (1 + 2x - 2x^3) / (1 - 3x^2 + 2x^4).

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128, 255, 256, 511, 512, 1023, 1024, 2047, 2048, 4095, 4096, 8191, 8192, 16383, 16384, 32767, 32768, 65535, 65536, 131071, 131072, 262143, 262144, 524287, 524288, 1048575, 1048576, 2097151, 2097152
Offset: 0

Views

Author

Paul Barry, Jul 25 2004, corrected Sep 05 2006

Keywords

Comments

Union of A000079 and A000225 without 0 = 2^0 - 1. - Reinhard Zumkeller, Jan 18 2005
Let f(0)=1, f(1)=1, and f(n) = f(n - 1 - (1 + (-1)^n)/2) + f(n-2); then a(n-1) = f(n). - John M. Campbell, May 22 2011
The same sequence is obtained iteratively by setting a(0)=1, a(1)=2, and a(n) = a(n-1) + a(n-2) - (GCD(1+a(n-1), a(n-2))-1), showing a kind of affinity to Fibonacci numbers. - Stanislav Sykora, Oct 16 2015

Crossrefs

Programs

  • Maple
    seq(op([2^n-1,2^n]),n=1..100); # Robert Israel, Oct 16 2015
  • Mathematica
    t={1}; Do[AppendTo[t,t[[-1]]+1]; AppendTo[t,t[[-1]]+t[[-2]]],{n,10}]; t (* Vladimir Joseph Stephan Orlovsky, Jan 27 2012 *)
    CoefficientList[Series[(1 + 2*x - 2*x^3)/(1 - 3*x^2 + 2*x^4), {x, 0, 40}], x] (* T. D. Noe, Jan 27 2012 *)
  • PARI
    a=vector(1000);a[0]=1;a[1]=2;for(n=3,#a,a[n]=a[n-1]+a[n-2]+1-gcd(1+a[n-1],a[n-2])) \\ Stanislav Sykora, Oct 16 2015
    
  • PARI
    Vec(2*(1+x)/(1-2*x^2)-1/(1-x^2) + O(x^100)) \\ Altug Alkan, Oct 16 2015

Formula

G.f.: 2*(1+x)/(1-2*x^2)-1/(1-x^2);
a(n) = 3*a(n-2) - 2*a(n-4);
a(n) = (1+sqrt(2)/2)*(sqrt(2))^n + (1/2-sqrt(2)/2)*(-sqrt(2))^n - (1+(-1)^n)/2;
a(n) = Sum_{k=0..n} binomial(floor(n/2), floor(k/2)).
a(n) = 2^floor((n+2)/2) - 1 + (n mod 2). - Reinhard Zumkeller, Jan 18 2005