cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097117 Expansion of (1-x)/((1-x)^2 - 4*x^3).

Original entry on oeis.org

1, 1, 1, 5, 13, 25, 57, 141, 325, 737, 1713, 3989, 9213, 21289, 49321, 114205, 264245, 611569, 1415713, 3276837, 7584237, 17554489, 40632089, 94046637, 217679141, 503840001, 1166187409, 2699251381, 6247675357, 14460848969, 33471028105
Offset: 0

Views

Author

Paul Barry, Jul 25 2004

Keywords

Comments

Related to the Lorenz-Poincaré geometry of the group PSL[2,C]. - Roger L. Bagula, Feb 17 2006

Programs

  • GAP
    a:=[1,1,1];; for n in [4..30] do a[n]:=2*a[n-1]-a[n-2]+4*a[n-3]; od; a; # G. C. Greubel, Jun 06 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)/((1-x)^2-4*x^3) )); // G. C. Greubel, Jun 06 2019
    
  • Mathematica
    M = {{0, 1, 0}, {0, 0, 1}, {4, -1, 2}}; w[0] = {0, 1, 1}; w[n_] := w[n] = M.w[n - 1] a = Flatten[Table[w[n][[1]], {n, 0, 25}]] (* Roger L. Bagula, Feb 17 2006 *)
    CoefficientList[Series[(1-x)/((1-x)^2-4x^3),{x,0,30}],x] (* or *) LinearRecurrence[{2,-1,4},{1,1,1},40] (* Harvey P. Dale, Jan 05 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x)/((1-x)^2-4*x^3)) \\ G. C. Greubel, Jun 06 2019
    
  • Sage
    ((1-x)/((1-x)^2-4*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jun 06 2019
    

Formula

G.f.: (1-x)/(1 - 2*x + x^2 - 4*x^3).
a(n) = 2*a(n-1) - a(n-2) + 4*a(n-3).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, 2*k)*4^k.

Extensions

Edited by N. J. A. Sloane, Aug 14 2008
Definition corrected by Harvey P. Dale, Jan 05 2019