cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097163 Expansion of (1+x-x^2)/((1-x)*(1-4*x^2)).

Original entry on oeis.org

1, 2, 5, 9, 21, 37, 85, 149, 341, 597, 1365, 2389, 5461, 9557, 21845, 38229, 87381, 152917, 349525, 611669, 1398101, 2446677, 5592405, 9786709, 22369621, 39146837, 89478485, 156587349, 357913941, 626349397, 1431655765, 2505397589
Offset: 0

Views

Author

Paul Barry, Jul 30 2004

Keywords

Comments

Interleave (4*4^n-1)/2 (see A002450) and (7*4^n-1)/3 (A206374).

Programs

  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=4*a[n-2]+4 od: seq(a[n]/4, n=2..33); # Zerinvary Lajos, Mar 17 2008
  • Mathematica
    CoefficientList[Series[(1+x-x^2)/((1-x)(1-4x^2)),{x,0,40}],x] (* or *) LinearRecurrence[{1,4,-4},{1,2,5},41] (* or *) f[n_]:=(15*2^n-(-2)^n - 8)/24; Array[f, 40] (* Harvey P. Dale, Jun 17 2011 *)

Formula

G.f.: (1+x-x^2)/((1-x)*(1-4*x^2)).
a(n) = 5*2^n/4+(-2)^n/12-1/3.
a(n) = a(n-1)+4*a(n-2)-4*a(n-3).
a(2*n) = A002450(n+1).
a(n) = A097164(n+1)/4.
a(n) = (15*2^n-(-2)^n-8)/24. - Harvey P. Dale, Jun 17 2011