cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A140966 a(n) = (5 + (-2)^n)/3.

Original entry on oeis.org

2, 1, 3, -1, 7, -9, 23, -41, 87, -169, 343, -681, 1367, -2729, 5463, -10921, 21847, -43689, 87383, -174761, 349527, -699049, 1398103, -2796201, 5592407, -11184809, 22369623, -44739241, 89478487, -178956969, 357913943, -715827881, 1431655767, -2863311529, 5726623063
Offset: 0

Views

Author

Paul Curtz, Jul 27 2008

Keywords

Comments

Inverse binomial transform of A048573.
This is an example of the case k=-1 of sequences with recurrences a(n) = k*a(n-1) + (k+3)*a(n-2) - (2*k+2)*a(n-3).
The case k=1 is covered, for example, by A097163, A135520, A136326, A136336, or A137208.
Sequences with k=2 are A094554 and A094555.
Sequences with k=3 are A084175, A108924, and A139818.

Crossrefs

Programs

Formula

a(n) = -a(n-1) + 2*a(n-2).
G.f.: (2+3*x)/((1-x)*(1+2*x)).
a(n+1) - a(n) = (-1)^(n+1)*A000079(n).
a(n+3) = (-1)^n*A083582(n).
a(n+1) - 2*a(n) = -a(n+2).
a(n+1) - 3*a(n) = 5*(-1)^(n+1)*A078008(n) = (-1)^(n+1)*A001045(n-1).
a(2n+3) = -A083584(n), a(2n) = A163834(n). - Philippe Deléham, Feb 24 2014
E.g.f.: (5*exp(x) + exp(-2*x))/3. - Stefano Spezia, Jul 27 2024

Extensions

Definition simplified by R. J. Mathar, Sep 11 2009

A135520 a(n) = 4*a(n-2).

Original entry on oeis.org

2, 1, 8, 4, 32, 16, 128, 64, 512, 256, 2048, 1024, 8192, 4096, 32768, 16384, 131072, 65536, 524288, 262144, 2097152, 1048576, 8388608, 4194304, 33554432, 16777216, 134217728, 67108864, 536870912, 268435456, 2147483648, 1073741824
Offset: 0

Views

Author

Paul Curtz, Feb 19 2008

Keywords

Crossrefs

Programs

Formula

From R. J. Mathar, corrected Apr 14 2008: (Start)
O.g.f.: (5/(1-2*x) + 3/(1+2*x))/4.
a(n) = (5*2^n + 3*(-2)^n)/4.
a(2*n)=2*A000302(n). a(2*n+1)=A000302(n). (End)
a(n) = A000079(n) terms swapped by pairs. - Paul Curtz, Apr 26 2011
a(n) = 2^(n+(-1)^n). - Wesley Ivan Hurt, Dec 13 2013
E.g.f.: (1/4)*(5*exp(2*x) + 3*exp(-2*x)). - G. C. Greubel, Oct 17 2016

Extensions

More terms from R. J. Mathar, Feb 23 2008

A206374 a(n) = (7*4^n - 1)/3.

Original entry on oeis.org

2, 9, 37, 149, 597, 2389, 9557, 38229, 152917, 611669, 2446677, 9786709, 39146837, 156587349, 626349397, 2505397589, 10021590357, 40086361429, 160345445717, 641381782869, 2565527131477, 10262108525909, 41048434103637, 164193736414549, 656774945658197
Offset: 0

Views

Author

Brad Clardy, Feb 07 2012

Keywords

Comments

First bisection of A062092 and A081253, second bisection of A097163. - Bruno Berselli, Feb 12 2012
Except a(0)=2, this is the 3rd row of table A178415. - Michel Marcus, Apr 13 2015

Crossrefs

Cf. A002450, A006666, A072197; A002042 (first differences), A178415, A347834.

Programs

  • Magma
    [(7*4^n-1)/3 : n in [0..30]];
    
  • Mathematica
    Table[(7(4^n) - 1)/3, {n, 0, 24}] (* Alonso del Arte, Feb 11 2012 *)
    CoefficientList[Series[(2-x)/(1-5*x+4*x^2),{x,0,30}],x] (* or *) LinearRecurrence[{5,-4},{2,9},30] (* Vincenzo Librandi, Mar 20 2012 *)
  • PARI
    vector(20,n,(7*4^(n-1)-1)/3) \\ Derek Orr, Apr 12 2015

Formula

G.f.: (2-x)/(1-5*x+4*x^2). - Bruno Berselli, Feb 12 2012
a(n) = A083597(n)+1. - Bruno Berselli, Feb 12 2012
a(n) = 4*a(n-1)+1 for n>0, a(0)=2. - Bruno Berselli, Oct 22 2015
a(n) = 7*A002450(n) + 2. - Yosu Yurramendi, Jan 24 2017
A006666(a(n)) = 2*n+11 for n > 0. - Juan Miguel Barga Pérez, Jun 18 2020
a(n) = 5*a(n-1) - 4*a(n-2) for n >= 2. - Wesley Ivan Hurt, Jun 30 2020
a(n) = A178415(3, n) = A347834(4, n-1), arrays, for n >= 1.- Wolfdieter Lang, Nov 29 2021

A097164 Expansion of (1+3x)/((1-x)(1-4x^2)).

Original entry on oeis.org

1, 4, 8, 20, 36, 84, 148, 340, 596, 1364, 2388, 5460, 9556, 21844, 38228, 87380, 152916, 349524, 611668, 1398100, 2446676, 5592404, 9786708, 22369620, 39146836, 89478484, 156587348, 357913940, 626349396, 1431655764, 2505397588
Offset: 0

Views

Author

Paul Barry, Jul 30 2004

Keywords

Comments

Partial sums of A084221. a(n) = A097163(n+1)/4. Third binomial transform is A097165.
a(n+1) = 4*A097163(n). - Zerinvary Lajos, Mar 17 2008
See A133628 for an essentially identical sequence. - R. J. Mathar, Jun 08 2008

Programs

  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=4*a[n-2]+4 od: seq(a[n], n=1..31); # Zerinvary Lajos, Mar 17 2008
  • Mathematica
    CoefficientList[Series[(1+3x)/((1-x)(1-4x^2)),{x,0,50}],x] (* or *) LinearRecurrence[{1,4,-4},{1,4,8},50] (* Harvey P. Dale, Jul 11 2023 *)

Formula

a(n) = 5*2^n/2 - (-2)^n/6 - 4/3;
a(n) = a(n-1) + 4a(n-2) - 4a(n-3).
G.f. ( 1+3*x ) / ( (x-1)*(2*x+1)*(2*x-1) ). - R. J. Mathar, Jul 06 2011
Showing 1-4 of 4 results.