A321373 Array T(n,k) read by antidiagonals where the first row is (-1)^k*A140966(k) and each subsequent row is obtained by adding A001045(k) to the preceding one.
2, 2, -1, 2, 0, 3, 2, 1, 4, 1, 2, 2, 5, 4, 7, 2, 3, 6, 7, 12, 9, 2, 4, 7, 10, 17, 20, 23, 2, 5, 8, 13, 22, 31, 44, 41, 2, 6, 9, 16, 27, 42, 65, 84, 87, 2, 7, 10, 19, 32, 53, 86, 127, 172, 169, 2, 8, 11, 22, 37, 64, 107, 170, 257, 340, 343
Offset: 0
Examples
Triangle a(n): 2; 2, -1; 2, 0, 3; 2, 1, 4, 1; 2, 2, 5, 4, 7; 2, 3, 6, 7, 12, 9; 2, 4, 7, 10, 17, 20, 23; etc. Row sums: 2, 1, 5, 8, 20, 39, 83, 166, 338, 677, 1361, 2724, ... = b(n+2). With b(0) = 2 and b(1) = 0, b(n) = b(n-1) + 2*b(n-2) + n - 4, n > 1. b(n) = A001045(n) - A097065(n-1). b(n) = b(n-2) + A000225(n-2).
Crossrefs
Programs
-
Mathematica
T[_, 0] = 2; T[0, k_] := (2^k + 5(-1)^k)/3; T[n_ /; n>0, k_ /; k>0] := T[n, k] = T[n-1, k] + (2^k + (-1)^(k+1))/3; T[, ] = 0; Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 10 2018 *)
Comments