cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A140966 a(n) = (5 + (-2)^n)/3.

Original entry on oeis.org

2, 1, 3, -1, 7, -9, 23, -41, 87, -169, 343, -681, 1367, -2729, 5463, -10921, 21847, -43689, 87383, -174761, 349527, -699049, 1398103, -2796201, 5592407, -11184809, 22369623, -44739241, 89478487, -178956969, 357913943, -715827881, 1431655767, -2863311529, 5726623063
Offset: 0

Views

Author

Paul Curtz, Jul 27 2008

Keywords

Comments

Inverse binomial transform of A048573.
This is an example of the case k=-1 of sequences with recurrences a(n) = k*a(n-1) + (k+3)*a(n-2) - (2*k+2)*a(n-3).
The case k=1 is covered, for example, by A097163, A135520, A136326, A136336, or A137208.
Sequences with k=2 are A094554 and A094555.
Sequences with k=3 are A084175, A108924, and A139818.

Crossrefs

Programs

Formula

a(n) = -a(n-1) + 2*a(n-2).
G.f.: (2+3*x)/((1-x)*(1+2*x)).
a(n+1) - a(n) = (-1)^(n+1)*A000079(n).
a(n+3) = (-1)^n*A083582(n).
a(n+1) - 2*a(n) = -a(n+2).
a(n+1) - 3*a(n) = 5*(-1)^(n+1)*A078008(n) = (-1)^(n+1)*A001045(n-1).
a(2n+3) = -A083584(n), a(2n) = A163834(n). - Philippe Deléham, Feb 24 2014
E.g.f.: (5*exp(x) + exp(-2*x))/3. - Stefano Spezia, Jul 27 2024

Extensions

Definition simplified by R. J. Mathar, Sep 11 2009

A083581 a(n) = 8/3 - 5*(-2)^n/3.

Original entry on oeis.org

1, 6, -4, 16, -24, 56, -104, 216, -424, 856, -1704, 3416, -6824, 13656, -27304, 54616, -109224, 218456, -436904, 873816, -1747624, 3495256, -6990504, 13981016, -27962024, 55924056, -111848104, 223696216, -447392424, 894784856, -1789569704, 3579139416, -7158278824
Offset: 0

Views

Author

Paul Barry, May 01 2003

Keywords

Crossrefs

Cf. A083582.

Programs

  • Magma
    [(8-5*(-2)^n)/3: n in [0..40]]; // Vincenzo Librandi, Aug 23 2014
    
  • Mathematica
    Table[(8 - 5 (-2)^n)/3, {n, 0, 40}] (* or *) CoefficientList[Series[(1 + 7 x)/((1 - x) (1 + 2 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 23 2014 *)
  • PARI
    a(n)=8/3-5*(-2)^n/3 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = (8-5(-2)^n)/3.
G.f.: (1+7x)/((1-x)(1+2x)).
E.g.f.: (8*exp(x)-5*exp(-2*x))/3.

A154570 The main diagonal of the successive differences of A154127.

Original entry on oeis.org

1, 3, -4, 2, -6, -2, -14, -18, -46, -82, -174, -338, -686, -1362, -2734, -5458, -10926, -21842, -43694, -87378, -174766, -349522, -699054, -1398098, -2796206, -5592402, -11184814, -22369618, -44739246, -89478482, -178956974, -357913938, -715827886
Offset: 0

Views

Author

Paul Curtz, Jan 12 2009

Keywords

Crossrefs

Programs

Formula

a(n) = a(n-1) + 2*a(n-2), n>0.
a(n+2) = 2*(-1)^(n+1)*A140966(n).
a(n+5) = -2*A083582(n).
a(2n+1) = 3 - A078008(2n) = 3 - A047849(n).
a(2n+2) = -4 - A078008(2n+1) = -4 - A020988(n).
G.f.: (1+2*x-9*x^2)/((1+x)*(1-2*x)). - R. J. Mathar, Feb 25 2009

Extensions

Edited and extended by R. J. Mathar, Feb 25 2009

A171160 a(n) = a(n-1) + 2*a(n-2) with a(0)=3, a(1)=4.

Original entry on oeis.org

3, 4, 10, 18, 38, 74, 150, 298, 598, 1194, 2390, 4778, 9558, 19114, 38230, 76458, 152918, 305834, 611670, 1223338, 2446678, 4893354, 9786710, 19573418, 39146838, 78293674, 156587350, 313174698, 626349398, 1252698794, 2505397590, 5010795178, 10021590358
Offset: 0

Views

Author

Paul Curtz, Dec 04 2009

Keywords

Crossrefs

Programs

Formula

a(n) = (1/3)*(2*(-1)^n + 7*2^n), with n>=0. - Paolo P. Lava, Dec 14 2009
G.f.: -(x+3) / ((x+1)*(2*x-1)). - Colin Barker, Feb 10 2015
From Paul Curtz, Jun 03 2022: (Start)
a(n) = A078008(n) + A078008(n+1) + A078008(n+2).
a(n) = 2^(n+1) + A078008(n).
a(n) = A001045(n+3) - A001045(n).
(a(n) + a(n+1) = a(n+2) - a(n) = A005009(n).)
a(n) + a(n+3) = A175805(n).
a(n) = A062510(n) + A083582(n-1) with A083582(-1) = 3.
a(n) = A092297(n) + A154879(n). (End)
a(n) = 2*A062092(n-1), for n>0; 2*a(n) = A083595(n+1). - Paul Curtz, Jun 08 2022

Extensions

Edited by N. J. A. Sloane, Dec 05 2009
More terms from J. Mulder (jasper.mulder(AT)planet.nl), Jan 28 2010
More terms from Max Alekseyev, Apr 24 2010

A338198 Triangle read by rows, T(n,k) = ((k+1)*2^(n-k)-(k-2)*(-1)^(n-k))/3 for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 2, 1, 1, 2, 3, 2, 1, 6, 5, 4, 3, 1, 10, 11, 8, 5, 4, 1, 22, 21, 16, 11, 6, 5, 1, 42, 43, 32, 21, 14, 7, 6, 1, 86, 85, 64, 43, 26, 17, 8, 7, 1, 170, 171, 128, 85, 54, 31, 20, 9, 8, 1, 342, 341, 256, 171, 106, 65, 36, 23, 10, 9, 1, 682, 683, 512, 341, 214, 127, 76, 41, 26, 11, 10, 1
Offset: 0

Views

Author

Werner Schulte, Oct 15 2020

Keywords

Comments

This triangle is related to the Jacobsthal numbers (A001045).

Examples

			The triangle T(n,k) for 0 <= k <= n starts:
n\k :    0     1     2    3    4    5    6   7   8   9
======================================================
  0 :    1
  1 :    0     1
  2 :    2     1     1
  3 :    2     3     2    1
  4 :    6     5     4    3    1
  5 :   10    11     8    5    4    1
  6 :   22    21    16   11    6    5    1
  7 :   42    43    32   21   14    7    6   1
  8 :   86    85    64   43   26   17    8   7   1
  9 :  170   171   128   85   54   31   20   9   8   1
etc.
		

Crossrefs

For columns k = 0 to 8 see A078008, A001045, A000079, A001045, A084214, A014551, A083595, A083582, A259713 respectively.

Programs

  • Mathematica
    Table[((k + 1)*2^(n - k) - (k - 2)*(-1)^(n - k))/3, {n, 0, 11}, {k, 0, n}] // Flatten (* Michael De Vlieger, Oct 15 2020 *)

Formula

T(n,n) = 1 for n >= 0; T(n,n-1) = n-1 for n > 0.
T(n,k) = T(n-1,k) + 2 * T(n-2,k) for 0 <= k <= n-2.
T(n,k) = 2 * T(n-1,k) - (k-2) * (-1)^(n-k) for 0 <= k < n.
T(n,k) = T(n+1-k,1) + (k-1) * T(n-k,1) for 0 <= k < n.
T(n+1,k) * T(n-1,k) - T(n,k+1) * T(n,k-1) = T(n-k,1)^2 for 0 < k < n.
Row sums are A083579(n+1) for n >= 0.
G.f. of column k >= 0: (1+(k-1)*t) * t^k / (1-t-2*t^2).
G.f.: Sum_{n>=0, k=0..n} T(n,k) * x^k * t^n = (1 - (1+x)*t + 2*x*t^2) / ((1 - x*t)^2 * (1 - t - 2*t^2)).
Conjecture: Let M(n,k) be the matrix inverse of T(n,k), seen as a matrix. Then M(i,j) = 0 if j < 0 or j > i, M(n,n) = 1 for n >= 0, M(n,n-1) = 1-n for n > 0, and M(n,k) = (-1)^(n-k) * (k^2-2) * (n-2)! / k! for 0 <= k <= n-2.
Showing 1-5 of 5 results.