A097181
Triangle read by rows in which row n gives coefficients of polynomial R_n(y) that satisfies R_n(1/2) = 8^n, where R_n(y) forms the initial (n+1) terms of g.f. A097182(y)^(n+1).
Original entry on oeis.org
1, 1, 14, 1, 21, 210, 1, 28, 378, 3220, 1, 35, 595, 6475, 49910, 1, 42, 861, 11396, 108402, 778596, 1, 49, 1176, 18326, 207074, 1791930, 12198004, 1, 56, 1540, 27608, 361018, 3647672, 29389492, 191682920, 1, 63, 1953, 39585, 587727, 6783147
Offset: 0
Row polynomials evaluated at y=1/2 equals powers of 8:
8^1 = 1 + 14/2;
8^2 = 1 + 21/2 + 210/2^2;
8^3 = 1 + 28/2 + 378/2^2 + 3220/2^3;
8^4 = 1 + 35/2 + 595/2^2 + 6475/2^3 + 49910/2^4;
where A097182(y)^(n+1) has the same initial terms as the n-th row:
A097182(y) = 1 + 7*x + 21*x^2 + 21*x^3 - 63*x^4 - 231*x^5 -+...
A097182(y)^2 = 1 + 14y +...
A097182(y)^3 = 1 + 21y + 210y^2 +...
A097182(y)^4 = 1 + 28y + 378y^2 + 3220y^3 +...
A097182(y)^5 = 1 + 35y + 595y^2 + 6475y^3 + 49910y^4 +...
Rows begin with n=0:
1;
1, 14;
1, 21, 210;
1, 28, 378, 3220;
1, 35, 595, 6475, 49910;
1, 42, 861, 11396, 108402, 778596;
1, 49, 1176, 18326, 207074, 1791930, 12198004;
1, 56, 1540, 27608, 361018, 3647672, 29389492, 191682920;
1, 63, 1953, 39585, 587727, 6783147, 62974371, 479497491, 3019005990; ...
-
Table[SeriesCoefficient[2*y/((1-16*x*y) + (2*y-1)*(1-16*x*y)^(7/8)), {x, 0,n}, {y,0,k}], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 17 2019 *)
-
{T(n,k)=if(n==0,1,if(k==0,1,if(k==n, 2^n*(4^n -sum(j=0,n-1, T(n,j)/2^j)), polcoeff((Ser(vector(n,i,T(n-1,i-1)),x) +x*O(x^k))^((n+1)/n),k,x))))}
A097182
G.f. A(x) has the property that the first (n+1) terms of A(x)^(n+1) form the n-th row polynomial R_n(y) of triangle A097181 and satisfy R_n(1/2) = 8^n for all n>=0.
Original entry on oeis.org
1, 7, 21, 21, -63, -231, -15, 1521, 3073, -4319, -29631, -29631, 143361, 489345, -255, -3342591, -6684671, 9454081, 64553985, 64553985, -311689215, -1064175615, -4095, 7266627585, 14533263361, -20553129983, -140345589759, -140345589759, 677648531457, 2313636773889
Offset: 0
A(x) = 1 + 7*x + 21*x^2 + 21*x^3 - 63*x^4 - 231*x^5 - 15*x^6 +-...
For n>=0, the first (n+1) coefficients of A(x)^(n+1) forms the
n-th row polynomial R_n(y) of triangle A097181:
A^1 = {1, _7, 21, 21, -63, -231, -15, 1521, ...}
A^2 = {1, 14, _91, 336, 609, -462, -5469, -9516, ...}
A^3 = {1, 21, 210, _1288, 5103, 11655, 2160, -85590, ...}
A^4 = {1, 28, 378, 3220, _18907, 77280, 199860, 153000, ...}
A^5 = {1, 35, 595, 6475, 49910, _283192, 1175190, 3282870, ...}
A^6 = {1, 42, 861, 11396, 108402, 778596, _4296034, 17959968, ...}
These row polynomials satisfy: R_n(1/2) = 8^n:
8^1 = 1 + 14/2;
8^2 = 1 + 21/2 + 210/2^2;
8^3 = 1 + 28/2 + 378/2^2 + 3220/2^3;
8^4 = 1 + 35/2 + 595/2^2 + 6475/2^3 + 49910/2^4.
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 16*x/(1-(1-2*x)^8) )); // G. C. Greubel, Sep 17 2019
-
seq(coeff(series(16*x/(1-(1-2*x)^8), x, n+2), x, n), n = 0..30); # G. C. Greubel, Sep 17 2019
-
CoefficientList[Series[16*x/(1-(1-2*x)^8), {x,0,30}], x] (* G. C. Greubel, Sep 17 2019 *)
-
a(n)=polcoeff(16*x/(1-(1-2*x)^8)+x*O(x^n),n,x)
-
def A097194_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P(16*x/(1-(1-2*x)^8)).list()
A097194_list(30) # G. C. Greubel, Sep 17 2019
A097183
Main diagonal of triangle A097181, in which the n-th row polynomial R_n(y) is formed from the initial (n+1) terms of g.f. A097182(y)^(n+1), where R_n(1/2) = 8^n for all n>=0.
Original entry on oeis.org
1, 14, 210, 3220, 49910, 778596, 12198004, 191682920, 3019005990, 47633205620, 752604648796, 11904837171864, 188493255221180, 2986893121197160, 47363590921840680, 751502309293205456, 11930099160029636614
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( (1-16*x)^(-7/8) )); // G. C. Greubel, Sep 17 2019
-
seq(coeff(series((1-16*x)^(-7/8), x, n+1), x, n), n = 0 ..20); # G. C. Greubel, Sep 17 2019
-
Table[FullSimplify[(n+1)*16^n*Gamma[n+7/8]/(Gamma[7/8]*Gamma[n+2])], {n, 0, 20}] (* Vaclav Kotesovec, Feb 09 2014 *)
CoefficientList[Series[(1-16*x)^(-7/8), {x,0,20}], x] (* G. C. Greubel, Sep 17 2019 *)
-
a(n)=polcoeff(1/(1-16*x+x*O(x^n))^(7/8),n,x)
-
def A097183_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P((1-16*x)^(-7/8)).list()
A097183_list(20) # G. C. Greubel, Sep 17 2019
A301271
Expansion of (1-16*x)^(1/8).
Original entry on oeis.org
1, -2, -14, -140, -1610, -19964, -259532, -3485144, -47920730, -670890220, -9526641124, -136837208872, -1984139528644, -28998962341720, -426699017313880, -6315145456245424, -93937788661650682, -1403541077650545484, -21053116164758182260, -316904801216886322440
Offset: 0
(1-b*x)^(1/
A003557(b)):
A002420 (b=4),
A004984 (b=8),
A004990 (b=9), (-1)^n *
A108735 (b=12), this sequence (b=16), (-1)^n *
A108733 (b=18),
A049393 (b=25),
A004996 (b=36),
A303007 (b=240),
A303055 (b=504),
A305886 (b=1728).
A138781
Triangle read by rows: coefficients of polynomials arising in the spontaneous magnetization of the anisotropic square lattice Ising model (see pp. 174-5 of the Guttmann reference).
Original entry on oeis.org
1, 2, 3, 2, 3, 16, 32, 16, 3, 4, 46, 200, 305, 200, 46, 4, 5, 100, 770, 2380, 3472, 2380, 770, 100, 5, 6, 185, 2230, 11600, 30240, 41244, 30240, 11600, 2230, 185, 6, 7, 308, 5362, 42140, 172795, 393008, 515332, 393008, 172795, 42140, 5362, 308, 7
Offset: 1
Triangle starts:
1;
2,3,2;
3,16,32,16,3;
4,46,200,305,200,46,4
- A. J. Guttmann, Indicators of solvability for lattice models, Discrete Math., 217 (2000), 167-189.
-
M:=(1-16*x*y/((1-x)^2*(1-y)^2))^(1/8): oneminusM:=simplify(series(1-M,x=0, 10)): for n to 7 do P[n]:=sort((1/2)*(y-1)^(2*n)*coeff(oneminusM,x,n)/y) end do: for n to 7 do seq(coeff(P[n],y,k),k=0..2*n-2) end do; # yields sequence in triangular form
Showing 1-5 of 5 results.
Comments