cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097204 Binomial transform of A033312.

Original entry on oeis.org

0, 0, 1, 8, 49, 294, 1893, 13572, 109345, 985898, 9863077, 108503064, 1302057249, 16926789294, 236975148421, 3554627439308, 56874039487681, 966858672273618, 17403456103022277, 330665665961879712, 6613313319247031425, 138879579704207582870
Offset: 0

Views

Author

Ross La Haye, Sep 16 2004

Keywords

Comments

a(n) = Sum_{k=0...n} n!(k!-1)/(k!(n-k)!).

Examples

			G.f. = x^2 + 8*x^3 + 49*x^4 + 294*x^5 + 1893*x^6 + 13572*x^7 + 109345*x^8 + ...
a(2) = 1 because P(2,0) = 1, P(2,1) = 2, P(2,2) = 2 while C(2,0) = 1, C(2,1) = 2, C(2,2) = 1 and 1 - 1 + 2 - 2 + 2 - 1 = 1.
		

Crossrefs

Programs

  • Maple
    A033312 := proc(n) factorial(n)-1; end: A097204 := proc(n) add( binomial(n,k)*A033312(k),k=1..n) ; end: seq(A097204(n),n=0..30) ; # R. J. Mathar, Aug 05 2007
    a := n -> exp(1)*GAMMA(n+1, 1)-2^n;
    seq(simplify(a(n)), n=0..20); # Peter Luschny, Sep 02 2014
  • Mathematica
    Table[Sum[Binomial[n,k]*(k!-1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Feb 09 2014 *)
  • PARI
    {a(n) = sum(k=0, n, binomial(n, k) * (k! - 1))}; /* Michael Somos, Nov 23 2016 */

Formula

a(n) = Sum_{k=0...n}(P(n,k) - binomial(n,k)).
Conjecture: a(n) +(-n-5)*a(n-1) +(5*n+3)*a(n-2) +4*(-2*n+3)*a(n-3) +4*(n-3)*a(n-4)=0. - R. J. Mathar, Nov 16 2012
Recurrence: (n-2)*a(n) = (n^2 + n - 4)*a(n-1) - (n-1)*(3*n-2)*a(n-2) + 2*(n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Feb 09 2014
a(n) ~ n! * exp(1). - Vaclav Kotesovec, Feb 09 2014
a(n) = exp(1)*Gamma(n+1, 1) - 2^n and a(n) ~ exp(1)*n! - 2^n. - Peter Luschny, Sep 02 2014
a(n) = A000522(n) - 2^n. - Anton Zakharov, Nov 20 2016
E.g.f.: (1/(1 - x) - exp(x))*exp(x). - Ilya Gutkovskiy, Nov 20 2016
0 = a(n)*(+16*a(n+1) - 80*a(n+2) + 92*a(n+3) - 36*a(n+4) + 4*a(n+5)) + a(n+1)*(+16*a(n+1) + 12*a(n+2) - 96*a(n+3) + 56*a(n+4) - 8*a(n+5)) + a(n+2)*(+44*a(n+2) - 19*a(n+3) - 19*a(n+4) + 5*a(n+5)) + a(n+3)*(+17*a(n+3) - 4*a(n+4) - a(n+5)) + a(n+4)*(+a(n+4)) for n>=0

Extensions

More terms from R. J. Mathar, Aug 05 2007