cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A109509 Number of hierarchical orderings with at least 2 elements on each level for n unlabeled elements. Unlabeled analog of A097236.

Original entry on oeis.org

1, 0, 1, 1, 3, 4, 9, 14, 28, 47, 88, 152, 279, 486, 876, 1539, 2744, 4824, 8551, 15023, 26503, 46509, 81747, 143210, 251007, 438915, 767403, 1339487, 2336955, 4071906, 7090589, 12333894, 21440241, 37235775, 64624267, 112067176, 194209732, 336313393, 582019000
Offset: 0

Views

Author

Thomas Wieder, Jun 30 2005

Keywords

Comments

A109509 is the Euler transform of the right-shifted Fibonacci numbers A000045.

Examples

			Let * denote an unlabeled element.
Let | denote a delimiter between two hierarchies. E.g., for n=3 we have in **|* two hierarchies (each with one level only).
Let : denote a higher level (within a single hierarchy). E.g., for n=6 we have in ***:**:* a single hierarchy distributed over three levels.
Then a(5) = 4 because we have *****, ***:**, **:***, **|***.
		

Crossrefs

Programs

  • Maple
    SeqSetSetxU := [T, {T=Set(S),S=Sequence(U,card>=1),U=Set(Z,card>=2)},unlabeled]; seq(count(SeqSetSetxU,size=j),j=1..25); # where x is an integer 1, 2, 3,... # x=2 gives 2 individuals per level.
  • Mathematica
    CoefficientList[Series[Product[1/(1-x^k)^Fibonacci[k-1], {k, 1, 40}], {x, 0, 40}], x] (* Vaclav Kotesovec, Aug 06 2015 *)
  • PARI
    ET(v)=Vec(prod(k=1,#v,1/(1-x^k+x*O(x^#v))^v[k]))
    ET(vector(40,n,fibonacci(n-1)))

Formula

a(n) ~ phi^(n-1/4) / (2 * sqrt(Pi) * 5^(1/8) * n^(3/4)) * exp(phi/10 - 1/2 + 2*5^(-1/4)*sqrt(n/phi) + s), where s = Sum_{k>=2} 1/((phi^(2*k) - phi^k - 1)*k) = 0.189744799982532613329750744326543900883761701983311537716143669... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 06 2015

Extensions

Edited with more terms from Franklin T. Adams-Watters, Oct 21 2009

A097237 Number of hierarchical orderings ("societies") of n labeled elements ("individuals") with at least two occupied levels.

Original entry on oeis.org

0, 2, 12, 86, 780, 8462, 106092, 1507046, 23905740, 418581662, 8014481772, 166501716086, 3728936827980, 89530481995502, 2293539506425452, 62429371709206406, 1799021068567370700, 54707449240102350782, 1750530594833378049132, 58787407236482804618006
Offset: 1

Views

Author

Thomas Wieder, Aug 02 2004

Keywords

Examples

			a(3) = 12. Let : denote the partition of n labeled individuals 1,2,3,4 into x=2 sets (i.e. "societies"). E.g., in 12:34 one has a single society with members 1 and 2 and a further single society with members 3 and 4. Let | denote a higher level (within a single society), e.g., in 1|2 the individual 2 is one level up with respect to individual 1. The order of individuals on a level is insignificant, e.g., 12|34 is equivalent to 21|43. For n = 3 and x = 2 one has 12|3; 23|1; 13|2; 1|23; 2|13; 3|12; 1|2|3; 2|3|1; 3|1|2; 1|3|2; 3|2|1; 2|1|3; which gives 12 different societies with at least 2 occupied levels.
		

Crossrefs

Programs

  • Maple
    with(combstruct); SetSeq2SetL:=[T,{T=Set(S), S=Sequence(U,card>=2), U=Set(Z,card >= 1)},labeled];
    # where x is an integer 1, 2, 3,... ; x=2 gives 2 levels per society.
    seq (count (SetSeq2SetL,size=j), j=1..12);
  • Mathematica
    Rest[CoefficientList[Series[E^((2*E^x-E^(2*x)-1) / (E^x-2)), {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Sep 13 2014 *)

Formula

E.g.f.: exp(-(exp(z)^2-2*exp(z)+1)/(-2+exp(z))).
a(n) ~ exp(sqrt(2*n/log(2)) + 1/(4*log(2)) - n - 7/4) * n^(n-1/4) / (2^(3/4) * log(2)^(n+1/4)). - Vaclav Kotesovec, Sep 13 2014

A332255 E.g.f.: 1 / (2 - 1 / (2 + x - exp(x))).

Original entry on oeis.org

1, 0, 1, 1, 13, 41, 461, 2745, 32397, 288937, 3794605, 44758649, 665371565, 9660560937, 162652002189, 2782536864697, 52737562595917, 1033546861769513, 21867683869860845, 481630083492884601, 11277805333488014445, 275314710164399079337, 7077059249870048306125
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 08 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[1/(2 - 1/(2 + x - Exp[x])), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    seq(n)={Vec(serlaplace(1/(2 - 1 / (2 + x - exp(x + O(x*x^n))))))} \\ Andrew Howroyd, Feb 08 2020

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * A032032(k) * a(n-k).
a(n) ~ n! * 2^(n-1) / ((c-1) * (2*c-3)^(n+1)), where c = -LambertW(-1, -exp(-3/2)) = 2.3576766739458990584... - Vaclav Kotesovec, Feb 08 2020
Showing 1-3 of 3 results.