A097249 a(n) is the number of times we must iterate A097246, starting at n, before the result is squarefree.
0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 3, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 2, 0, 1, 1, 1, 0, 0, 0, 1, 0
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
f[n_] := Product[{p, e} = pe; NextPrime[p]^Quotient[e, 2] p^Mod[e, 2], {pe, FactorInteger[n]}]; a[n_] := (NestWhileList[f, n, !SquareFreeQ[#]&] // Length) - 1; Array[a, 105] (* Jean-François Alcover, Nov 18 2021 *)
-
PARI
A097246(n) = { my(f=factor(n)); prod(i=1, #f~, (nextprime(f[i,1]+1)^(f[i,2]\2))*((f[i,1])^(f[i,2]%2))); }; A097249(n) = if(issquarefree(n),0,1+A097249(A097246(n))); \\ Antti Karttunen, Jul 29 2018
Formula
If A008966(n) = 1 [when n is in A005117], a(n) = 0, otherwise a(n) = 1 + a(A097246(n)). - Antti Karttunen, Jul 29 2018
Extensions
Edited by Sam Alexander, Jan 05 2005
Comments