cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097318 Numbers with more than one prime factor and, in the ordered factorization, the exponent never increases when read from left to right.

Original entry on oeis.org

6, 10, 12, 14, 15, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 51, 52, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 99, 100, 102, 104, 105, 106, 110, 111, 112, 114
Offset: 1

Views

Author

Ralf Stephan, Aug 04 2004

Keywords

Comments

If n = Product_{k=1..m} p(k)^e(k), then m > 1, e(1) >= e(2) >= ... >= e(m).
These are numbers whose ordered prime signature is weakly decreasing. Weakly increasing is A304678. Ordered prime signature is A124010. - Gus Wiseman, Nov 10 2019

Examples

			60 is 2^2*3^1*5^1, A001221(60)=3 and 2>=1>=1, so 60 is in sequence.
		

Crossrefs

Programs

  • Maple
    q:= n-> (l-> (t-> t>1 and andmap(i-> l[i, 2]>=l[i+1, 2],
            [$1..t-1]))(nops(l)))(sort(ifactors(n)[2])):
    select(q, [$1..120])[];  # Alois P. Heinz, Nov 11 2019
  • Mathematica
    fQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Length[f] > 1 && Max[Differences[f]] <= 0]; Select[Range[2, 200], fQ] (* T. D. Noe, Nov 04 2013 *)
  • PARI
    for(n=1, 130, F=factor(n); t=0; s=matsize(F)[1]; if(s>1, for(k=1, s-1, if(F[k, 2]