A097320 Numbers with more than one distinct prime factor and, in the ordered (canonical) factorization, the exponent always decreases when read from left to right.
12, 20, 24, 28, 40, 44, 45, 48, 52, 56, 63, 68, 72, 76, 80, 88, 92, 96, 99, 104, 112, 116, 117, 124, 135, 136, 144, 148, 152, 153, 160, 164, 171, 172, 175, 176, 184, 188, 189, 192, 200, 207, 208, 212, 224, 232, 236, 244, 248, 261, 268, 272, 275, 279, 284, 288
Offset: 1
Examples
The ordered (canonical) factorization of 80 is 2^4 * 5^1 and 4 > 1, so 80 is in sequence.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
fQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Length[f] > 1 && Max[Differences[f]] < 0]; Select[Range[2, 288], fQ] (* T. D. Noe, Nov 04 2013 *)
-
PARI
for(n=1, 320, F=factor(n); t=0; s=matsize(F)[1]; if(s>1, for(k=1, s-1, if(F[k, 2]<=F[k+1, 2], t=1; break)); if(!t, print1(n", "))))
-
PARI
is(n) = my(f = factor(n)[,2]); #f > 1 && vecsort(f,,12) == f \\ Rick L. Shepherd, Jan 17 2018
-
Python
from sympy import factorint def ok(n): e = list(factorint(n).values()) return 1 < len(e) == len(set(e)) and e == sorted(e, reverse=True) print([k for k in range(289) if ok(k)]) # Michael S. Branicky, Dec 20 2021
Formula
If n = Product_{k=1..m} p(k)^e(k), with p(k) > p(k-1) for k > 1, then m > 1, e(1) > e(2) > ... > e(m).
Extensions
Edited by Peter Munn, Jun 01 2025
Comments