cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A097318 Numbers with more than one prime factor and, in the ordered factorization, the exponent never increases when read from left to right.

Original entry on oeis.org

6, 10, 12, 14, 15, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 51, 52, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 99, 100, 102, 104, 105, 106, 110, 111, 112, 114
Offset: 1

Views

Author

Ralf Stephan, Aug 04 2004

Keywords

Comments

If n = Product_{k=1..m} p(k)^e(k), then m > 1, e(1) >= e(2) >= ... >= e(m).
These are numbers whose ordered prime signature is weakly decreasing. Weakly increasing is A304678. Ordered prime signature is A124010. - Gus Wiseman, Nov 10 2019

Examples

			60 is 2^2*3^1*5^1, A001221(60)=3 and 2>=1>=1, so 60 is in sequence.
		

Crossrefs

Programs

  • Maple
    q:= n-> (l-> (t-> t>1 and andmap(i-> l[i, 2]>=l[i+1, 2],
            [$1..t-1]))(nops(l)))(sort(ifactors(n)[2])):
    select(q, [$1..120])[];  # Alois P. Heinz, Nov 11 2019
  • Mathematica
    fQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Length[f] > 1 && Max[Differences[f]] <= 0]; Select[Range[2, 200], fQ] (* T. D. Noe, Nov 04 2013 *)
  • PARI
    for(n=1, 130, F=factor(n); t=0; s=matsize(F)[1]; if(s>1, for(k=1, s-1, if(F[k, 2]
    				

A096156 Numbers with ordered prime signature (2,1).

Original entry on oeis.org

12, 20, 28, 44, 45, 52, 63, 68, 76, 92, 99, 116, 117, 124, 148, 153, 164, 171, 172, 175, 188, 207, 212, 236, 244, 261, 268, 275, 279, 284, 292, 316, 325, 332, 333, 356, 369, 387, 388, 404, 412, 423, 425, 428, 436, 452, 475, 477, 508, 524, 531, 539, 548, 549
Offset: 1

Views

Author

Alford Arnold, Jul 24 2004

Keywords

Comments

Numbers of the form p^2 * q where p and q are primes with p < q.
Also terms of A054753 that are not in A095990.
There are pairs that differ by 1, which is not the case in A095990, beginning with 44 and 45, 116 and 117, 171 and 172, 332 and 333, etc.

Examples

			a(2) = 20 because 20 = 2*2*5 and 2 < 5.
Note that 18 = 2*3^2 is not in the sequence, even though it has prime signature (2,1), because its ordered prime signature is (1,2) (A095990). Prime signatures correspond to partitions of Omega(n), while ordered prime signatures correspond to compositions of Omega(n).
		

Crossrefs

Cf. A095990.
Subsequence of A054753, A097320, A325241, A345381.

Programs

  • Mathematica
    Take[ Sort[ Flatten[ Table[ Prime[p]^2 Prime[q], {q, 2, 33}, {p, q - 1}]]], 54] (* Robert G. Wilson v, Jul 28 2004 *)
    Select[Range[10^5],FactorInteger[#][[All,2]]=={2,1}&] (* Enrique Pérez Herrero, Jun 27 2012 *)
  • PARI
    list(lim)=my(v=List()); forprime(q=3, lim\4, forprime(p=2, min(sqrtint(lim\q), q-1), listput(v, p^2*q))); Set(v) \\ Charles R Greathouse IV, Feb 26 2014
    
  • Python
    from sympy import factorint
    def ok(n): return list(factorint(n).values()) == [2, 1]
    print([k for k in range(550) if ok(k)]) # Michael S. Branicky, Dec 20 2021

Extensions

Edited and extended by Robert G. Wilson v and Rick L. Shepherd, Jul 27 2004

A112769 Numbers with more than one prime factor and, in the ordered factorization, at least one exponent is less than the previous exponent when read from left to right.

Original entry on oeis.org

12, 20, 24, 28, 40, 44, 45, 48, 52, 56, 60, 63, 68, 72, 76, 80, 84, 88, 90, 92, 96, 99, 104, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 148, 152, 153, 156, 160, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 198, 200, 204, 207, 208, 212, 220
Offset: 1

Views

Author

Ray Chandler, Sep 23 2005, based on a suggestion from Leroy Quet

Keywords

Comments

This sequence lists the integers x such that A085079(x) > x. - Michel Marcus, Jun 25 2025 and Jul 30 2015

Examples

			90 = 2^1 * 3^2 * 5^1 and 2 > 1, so 90 is in sequence.
		

Crossrefs

Programs

  • Mathematica
    mopfQ[n_]:=Module[{e=FactorInteger[n][[All,2]]},Length[e]>1&&Min[ Differences[ e]]<0]; Select[Range[300],mopfQ] (* Harvey P. Dale, May 30 2018 *)
  • PARI
    isok(n) = {f = factor(n)[,2]; if (#f > 1, for (k=2, #f, if (f[k] < f[k-1], return (1)););); return (0);} \\ Michel Marcus, Jul 30 2015

A087315 a(n) = Product_{k=1..n} prime(k)^prime(n-k+1).

Original entry on oeis.org

1, 4, 72, 21600, 190512000, 580909190400000, 428616352408083840000000, 859278392084450410309036800000000000, 2097197194438629126172451944256706311040000000000000
Offset: 0

Views

Author

Amarnath Murthy, Sep 03 2003

Keywords

Examples

			a(3) = 2^5*3^3*5^2 = 21600.
		

Crossrefs

Programs

  • Magma
    [1] cat [(&*[NthPrime(k)^(NthPrime(n-k+1)): k in [1..n]]): n in [1..10]]; // G. C. Greubel, Oct 14 2018
  • Maple
    seq(product(ithprime(k)^ithprime(n-k+1), k=1..n), n=0..10);
  • Mathematica
    Table[Product[Prime[k]^Prime[n - k + 1], {k, 1, n}], {n, 0, 10}] (* G. C. Greubel, Oct 14 2018 *)
  • PARI
    for(n=0, 10, print1(prod(k=1,n, prime(k)^prime(n-k+1)), ", ")) \\ G. C. Greubel, Oct 14 2018
    
  • Sage
    [prod(nth_prime(i)^nth_prime(k-i+1) for i in (1..k)) for k in (0..10)] # Giuseppe Coppoletta, Nov 03 2014
    

Extensions

More terms from Jorge Coveiro, Dec 22 2004
Corrected by David Wasserman, May 02 2005

A097319 Numbers with more than one prime factor and, in the ordered factorization, the exponents are strictly increasing.

Original entry on oeis.org

18, 50, 54, 75, 98, 108, 147, 162, 242, 245, 250, 324, 338, 363, 375, 486, 500, 507, 578, 605, 648, 686, 722, 845, 847, 867, 972, 1029, 1058, 1083, 1125, 1183, 1250, 1372, 1445, 1458, 1587, 1682, 1715, 1805, 1859, 1875, 1922, 1944, 2023, 2250
Offset: 1

Views

Author

Ralf Stephan, Aug 04 2004

Keywords

Comments

If n = Product[k=1..m, p(k)^e(k)], then m>1 and e(1) < e(2) <...< e(m).

Examples

			507 is 3^1*13^2, A001221(507)=2 and 1<2, so 507 is in sequence.
150 is 2^1*3^1*5^2 is not in the sequence because 1,1,2 is not strictly increasing (although it is nondecreasing).
		

Crossrefs

Subset of A126706. Cf. A097318, A097320.

Programs

  • Mathematica
    fQ[n_] := Module[{d, f = FactorInteger[n]}, If[Length[f] == 1, False, d = Differences[Transpose[f][[2]]]; And @@ ((# > 0) & /@ d)]]; Select[Range[2250], fQ] (* T. D. Noe, Apr 09 2013 *)
  • PARI
    for(n=1, 3000, F=factor(n); t=0; s=matsize(F)[1]; if(s>1, for(k=1, s-1, if(F[k, 2]>=F[k+1, 2], t=1; break)); if(!t, print1(n", "))))
    
  • PARI
    is(n) = my(f = factor(n)[,2]); #f > 1 && vecsort(f, , 8) == f \\ Rick L. Shepherd, Jan 17 2018

A057715 Numbers m = Product p_i^{e_i}, not a power of a prime, such that p_j^{e_j} > p_k^{e_k} for all p_j < p_k.

Original entry on oeis.org

12, 24, 40, 45, 48, 56, 63, 80, 96, 112, 135, 144, 160, 175, 176, 189, 192, 208, 224, 275, 288, 297, 320, 325, 351, 352, 384, 405, 416, 425, 448, 459, 475, 513, 539, 544, 567, 575, 576, 608, 621, 637, 640, 675, 704, 720, 736, 768, 800, 832, 833, 864, 875
Offset: 1

Views

Author

Leroy Quet, Oct 24 2000

Keywords

Examples

			720 is included because 720 = 2^4 * 3^2 * 5^1 and 2^4 > 3^2 > 5^1.
		

Crossrefs

Subsequence of A085231, A097320, A126706.
Cf. A363063.

Programs

  • Mathematica
    Select[Range[575], Greater @@ Power @@@ (fi = FactorInteger[#]) && Length[fi] > 1 &] (* Ray Chandler, Nov 06 2008 *)

Extensions

Title clarified by Sean A. Irvine, Jun 24 2022 and Peter Munn, May 26 2025

A230766 Numbers with more than one prime factor and, in the ordered factorization, the exponent never decreases when read from left to right.

Original entry on oeis.org

6, 10, 14, 15, 18, 21, 22, 26, 30, 33, 34, 35, 36, 38, 39, 42, 46, 50, 51, 54, 55, 57, 58, 62, 65, 66, 69, 70, 74, 75, 77, 78, 82, 85, 86, 87, 91, 93, 94, 95, 98, 100, 102, 105, 106, 108, 110, 111, 114, 115, 118, 119, 122, 123, 129, 130, 133, 134, 138, 141
Offset: 1

Views

Author

Alex Ratushnyak, Oct 29 2013

Keywords

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F;
      F:= sort(ifactors(n)[2],(a,b) -> a[1] < b[1]);
      if nops(F) = 1 then return false fi;
      F:= F[..,2];
      F = sort(F)
    end proc:
    select(filter, [$2..200]); # Robert Israel, Feb 07 2025
  • Mathematica
    fQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Length[f] > 1 && Min[Differences[f]] >= 0]; Select[Range[2, 200], fQ] (* T. D. Noe, Nov 04 2013 *)
    Select[Range[150],PrimeNu[#]>1&&Min[Differences[FactorInteger[#][[All,2]]]]>=0&] (* Harvey P. Dale, May 22 2020 *)
  • PARI
    isok(n) = {my(f = factor(n), nbf = #f~); if (nbf < 2, return (0)); lastexp = 0; for (i=1, nbf, if ((newexp = f[i, 2]) < lastexp, return (0)); lastexp = newexp;); return (1);} \\ Michel Marcus, Oct 30 2013

Formula

If n = Product_{k=1..m} p(k)^e(k), then m > 1 and e(1) <= e(2) <= ... <= e(m).
Showing 1-7 of 7 results.