cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A097318 Numbers with more than one prime factor and, in the ordered factorization, the exponent never increases when read from left to right.

Original entry on oeis.org

6, 10, 12, 14, 15, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 51, 52, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 99, 100, 102, 104, 105, 106, 110, 111, 112, 114
Offset: 1

Views

Author

Ralf Stephan, Aug 04 2004

Keywords

Comments

If n = Product_{k=1..m} p(k)^e(k), then m > 1, e(1) >= e(2) >= ... >= e(m).
These are numbers whose ordered prime signature is weakly decreasing. Weakly increasing is A304678. Ordered prime signature is A124010. - Gus Wiseman, Nov 10 2019

Examples

			60 is 2^2*3^1*5^1, A001221(60)=3 and 2>=1>=1, so 60 is in sequence.
		

Crossrefs

Programs

  • Maple
    q:= n-> (l-> (t-> t>1 and andmap(i-> l[i, 2]>=l[i+1, 2],
            [$1..t-1]))(nops(l)))(sort(ifactors(n)[2])):
    select(q, [$1..120])[];  # Alois P. Heinz, Nov 11 2019
  • Mathematica
    fQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Length[f] > 1 && Max[Differences[f]] <= 0]; Select[Range[2, 200], fQ] (* T. D. Noe, Nov 04 2013 *)
  • PARI
    for(n=1, 130, F=factor(n); t=0; s=matsize(F)[1]; if(s>1, for(k=1, s-1, if(F[k, 2]
    				

A097320 Numbers with more than one distinct prime factor and, in the ordered (canonical) factorization, the exponent always decreases when read from left to right.

Original entry on oeis.org

12, 20, 24, 28, 40, 44, 45, 48, 52, 56, 63, 68, 72, 76, 80, 88, 92, 96, 99, 104, 112, 116, 117, 124, 135, 136, 144, 148, 152, 153, 160, 164, 171, 172, 175, 176, 184, 188, 189, 192, 200, 207, 208, 212, 224, 232, 236, 244, 248, 261, 268, 272, 275, 279, 284, 288
Offset: 1

Views

Author

Ralf Stephan, Aug 04 2004

Keywords

Comments

The numbers in A304686 that are not prime powers. - Peter Munn, Jun 01 2025

Examples

			The ordered (canonical) factorization of 80 is 2^4 * 5^1 and 4 > 1, so 80 is in sequence.
		

Crossrefs

Subsequence of A126706, A097318, A112769, A304686.
Subsequences: A057715, A096156.

Programs

  • Mathematica
    fQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Length[f] > 1 && Max[Differences[f]] < 0]; Select[Range[2, 288], fQ] (* T. D. Noe, Nov 04 2013 *)
  • PARI
    for(n=1, 320, F=factor(n); t=0; s=matsize(F)[1]; if(s>1, for(k=1, s-1, if(F[k, 2]<=F[k+1, 2], t=1; break)); if(!t, print1(n", "))))
    
  • PARI
    is(n) = my(f = factor(n)[,2]); #f > 1 && vecsort(f,,12) == f \\ Rick L. Shepherd, Jan 17 2018
    
  • Python
    from sympy import factorint
    def ok(n):
        e = list(factorint(n).values())
        return 1 < len(e) == len(set(e)) and e == sorted(e, reverse=True)
    print([k for k in range(289) if ok(k)]) # Michael S. Branicky, Dec 20 2021

Formula

If n = Product_{k=1..m} p(k)^e(k), with p(k) > p(k-1) for k > 1, then m > 1, e(1) > e(2) > ... > e(m).

Extensions

Edited by Peter Munn, Jun 01 2025
Showing 1-2 of 2 results.