cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097325 Period 6: repeat [0, 1, 1, 1, 1, 1].

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Ralf Stephan, Aug 16 2004

Keywords

Comments

a(n) is 0 if 6 divides n, 1 otherwise.

Crossrefs

Characteristic sequence of A047253.
Binary complement of A079979.

Programs

Formula

G.f.: 1/(1-x) - 1/(1-x^6) = Sum_{k>=0} x^k - x^(6*k).
Recurrence: a(n+6) = a(n), a(0) = 0, a(i) = 1, 1 <= i <= 5.
a(n) = (1/4) * (3 - (-1)^n - (-1)^((n+1)/3) - (-1)^((2n+1)/3)).
From Reinhard Zumkeller, Nov 30 2009: (Start)
a(n) = 1 - A079979(n).
a(A047253(n)) = 1, a(A008588(n)) = 0.
A033438(n) = Sum_{k=0..n} a(k)*(n-k). (End)
Dirichlet g.f.: (1 - 1/6^s)*zeta(s). - R. J. Mathar, Feb 19 2011
For the general case: the characteristic function of numbers that are not multiples of m is a(n) = floor((n-1)/m) - floor(n/m) + 1, m, n > 0. - Boris Putievskiy, May 08 2013
a(n) = sign(n mod 6). - Wesley Ivan Hurt, Jun 29 2013
a(n) = ceiling(5n/6) - floor(5n/6). - Wesley Ivan Hurt, Jun 20 2014

Extensions

New name from Omar E. Pol, Oct 21 2013