cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097332 Expansion of (1/(1-x))(1+2x/(1-x+sqrt(1-2x-3x^2))).

Original entry on oeis.org

1, 2, 3, 5, 9, 18, 39, 90, 217, 540, 1375, 3563, 9361, 24872, 66707, 180341, 490913, 1344380, 3701159, 10237541, 28436825, 79288844, 221836403, 622599626, 1752360041, 4945087838, 13988490339, 39658308815, 112666081617
Offset: 0

Views

Author

Paul Barry, Aug 05 2004

Keywords

Comments

Binomial transform of A097331. Binomial transform is A014318. Partial sums of 1+2x/(1-x+sqrt(1-2x-3x^2)) or (1+x+sqrt(1-2x-3x^2))/(1-x+sqrt(1-2x-3x^2)), which is A001006 with an extra leading 1.
Apparently the Motzkin transform of 1, 2, bar(1, -1, -1, 1), where bar() denotes a periodically continued series, as in A057077. - R. J. Mathar, Dec 11 2008
Starting with offset 1 = iterates of M * [1,1,0,0,0,...] where M = a tridiagonal matrix with [1,1,1,...] in the main and superdiagonals and [0,1,1,1,...] in the subdiagonal. - Gary W. Adamson, Jan 08 2009
Hankel transform is A087960(n) = (-1)^binomial(n+1,2). - Paul Barry, Aug 10 2009

Examples

			G.f. = 1 + 2*x + 3*x^2 + 5*x^3 + 9*x^4 + 18*x^5 + 39*x^6 + 90*x^7 + 217*x^8 + ...
		

Programs

  • Mathematica
    CoefficientList[Series[1/(1-x)*(1+(2x)/(1-x+Sqrt[1-2x-3x^2])),{x,0,40}],x] (* Harvey P. Dale, May 03 2012 *)
    a[ n_] := SeriesCoefficient[ (1 + x - Sqrt[1 - 2 x - 3 x^2]) / (2 x (1 - x)), {x, 0, n}]; (* Michael Somos, May 19 2014 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 + x - sqrt(1 - 2*x - 3*x^2 + x^2 * O(x^n))) / (2 * x * (1 - x)), n))}; /* Michael Somos, May 19 2014 */

Formula

a(n) = Sum_{k=0..n} (-1)^(n+k)*binomial(n, k)*Sum_{i=0..k} Catalan(k-i)*2^i.
G.f.: 1/(1-x-x/(1+x/(1-x+x/(1-x/(1-x-x/(1+x/(1-x+x/(1-x/(1-x-x/(1+... (continued fraction). - Paul Barry, Aug 10 2009
Conjecture D-finite with recurrence: (n+1)*a(n) - 3*n*a(n-1) + (-n+5)*a(n-2) + 3*(n-2)*a(n-3) = 0. - R. J. Mathar, Nov 26 2012
a(n) ~ 3^(n+3/2) / (4 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 13 2014
0 = a(n)*(9*a(n+1) + 6*a(n+2) - 27*a(n+3) + 12*a(n+4)) + a(n+1)*(-12*a(n+1) + 10*a(n+2) + 12*a(n+3) - 7*a(n+4)) + a(n+2)*(-12*a(n+2) + 14*a(n+3) - 6*a(n+4)) + a(n+3)*(a(n+4)). - Michael Somos, May 19 2014