A087960 a(n) = (-1)^binomial(n+1,2).
1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1
Offset: 0
A097331 Expansion of 1 + 2x/(1 + sqrt(1 - 4x^2)).
1, 1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, 132, 0, 429, 0, 1430, 0, 4862, 0, 16796, 0, 58786, 0, 208012, 0, 742900, 0, 2674440, 0, 9694845, 0, 35357670, 0, 129644790, 0, 477638700, 0, 1767263190, 0, 6564120420, 0, 24466267020, 0, 91482563640, 0, 343059613650, 0
Offset: 0
Comments
Essentially the same as A126120. - R. J. Mathar, Jun 15 2008
Hankel transform is A087960(n) = (-1)^binomial(n+1,2). - Paul Barry, Aug 10 2009
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..3340
- Jean-Luc Baril, Sergey Kirgizov, Armen Petrossian, Motzkin paths with a restricted first return decomposition, Integers (2019) Vol. 19, A46.
Programs
-
Maple
A097331_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1; for w from 1 to n do a[w]:=a[w-1]-(-1)^w*add(a[j]*a[w-j-1],j=1..w-1) od; convert(a,list)end: A097331_list(48); # Peter Luschny, May 19 2011
-
Mathematica
a[0] = 1; a[n_?OddQ] := CatalanNumber[(n-1)/2]; a[] = 0; Table[a[n], {n, 0, 48}] (* _Jean-François Alcover, Jul 24 2013 *)
-
Sage
def A097331_list(n) : D = [0]*(n+2); D[1] = 1 b = True; h = 1; R = [] for i in range(2*n-1) : if b : for k in range(h,0,-1) : D[k] -= D[k-1] h += 1; R.append(abs(D[1])) else : for k in range(1,h, 1) : D[k] += D[k+1] b = not b return R A097331_list(49) # Peter Luschny, Jun 03 2012
Formula
a(n) = 0^n + Catalan((n-1)/2)(1-(-1)^n)/2.
From Paul Barry, Aug 10 2009: (Start)
G.f.: 1+xc(x^2), c(x) the g.f. of A000108;
G.f.: 1/(1-x/(1+x/(1+x/(1-x/(1-x/(1+x/(1+x/(1-x/(1-x/(1+... (continued fraction);
G.f.: 1+x/(1-x^2/(1-x^2/(1-x^2/(1-x^2/(1-... (continued fraction). (End)
G.f.: 1/(1-z/(1-z/(1-z/(...)))) where z=x/(1+2*x) (continued fraction); more generally g.f. C(x/(1+2*x)) where C(x) is the g.f. for the Catalan numbers (A000108). - Joerg Arndt, Mar 18 2011
Conjecture: (n+1)*a(n) + n*a(n-1) + 4*(-n+2)*a(n-2) + 4*(-n+3)*a(n-3)=0. - R. J. Mathar, Dec 02 2012
Recurrence: (n+3)*a(n+2) = 4*n*a(n), a(0)=a(1)=1. For nonzero terms, a(n) ~ 2^(n+1)/((n+1)^(3/2)*sqrt(2*Pi)). - Fung Lam, Mar 17 2014
A014318 Convolution of Catalan numbers and powers of 2.
1, 3, 8, 21, 56, 154, 440, 1309, 4048, 12958, 42712, 144210, 496432, 1735764, 6145968, 21986781, 79331232, 288307254, 1054253208, 3875769606, 14315659632, 53097586284, 197677736208, 738415086066
Offset: 0
Keywords
Comments
Binomial transform of A097332: (1, 2, 3, 5, 9, 18, 39, ...). - Gary W. Adamson, Aug 01 2011
Hankel transform is A087960. - Wathek Chammam, Dec 02 2011
Links
- Fung Lam, Table of n, a(n) for n = 0..1600
- W. Chammam, F. Marcellán and R. Sfaxi, Orthogonal polynomials, Catalan numbers, and a general Hankel determinant evaluation, Linear Algebra and its Applications, Volume 436, Issue 7, 1 April 2012, Pages 2105-2116.
Programs
-
Magma
A014318:= func< n | (&+[2^(n-j)*Catalan(j): j in [0..n]]) >; [A014318(n): n in [0..40]]; // G. C. Greubel, Jan 09 2023
-
Maple
a:=proc(n) options operator, arrow: sum(2^(n-j)*binomial(2*j,j)/(j+1), j=0..n) end proc: seq(a(n), n=0..23); # Emeric Deutsch, Oct 16 2008
-
Mathematica
a[n_]:= a[n]= Sum[2^(n-j)*CatalanNumber[j], {j,0,n}]; Table[a[n], {n,0,40}] (* G. C. Greubel, Jan 09 2023 *)
-
SageMath
def A014318(n): return sum(2^(n-j)*catalan_number(j) for j in range(n+1)) [A014318(n) for n in range(41)] # G. C. Greubel, Jan 09 2023
Formula
From Emeric Deutsch, Oct 16 2008: (Start)
G.f.: (1-sqrt(1-4*z))/(2*z*(1-2*z)).
a(n) = Sum_{j=0..n} (2^(n-j) * binomial(2*j,j)/(j+1)). (End)
Recurrence: (n+1)*a(n) = 32*(2*n-7)*a(n-5) + 48*(8-3*n)*a(n-4) + 8*(16*n-29)*a(n-3) + 4*(13-14*n)*a(n-2) + 12*n*a(n-1), n>=5. - Fung Lam, Mar 09 2014
Asymptotics: a(n) ~ 2^(2n+1)/n^(3/2)/sqrt(Pi). - Fung Lam, Mar 21 2014
G.f. A(x) satisfies: A(x) = 1 / (1 - 2*x) + x * (1 - 2*x) * A(x)^2. - Ilya Gutkovskiy, Nov 21 2021
A185812 Riordan array ( 1/(1-x), x*A005043(x) ).
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 6, 5, 4, 1, 1, 1, 12, 12, 7, 5, 1, 1, 1, 27, 26, 19, 9, 6, 1, 1, 1, 63, 63, 43, 27, 11, 7, 1, 1, 1, 154, 153, 110, 63, 36, 13, 8, 1, 1, 1, 386, 386, 275, 169, 86, 46, 15, 9, 1, 1
Offset: 0
Examples
Array begins: 1; 1, 1; 1, 1, 1; 1, 2, 1, 1; 1, 3, 3, 1, 1; 1, 6, 5, 4, 1, 1; 1, 12, 12, 7, 5, 1, 1; 1, 27, 26, 19, 9, 6, 1, 1;
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Crossrefs
Programs
-
Maple
A185812 := proc(n,k) if n = k or k =0 then 1; else k*add(1/(n-i)*add(binomial(2*j-k-1,j-1) *(-1)^(n-j-i) *binomial(n-i,j),j=k..n-i),i=0..n-k) ; end if; end proc: seq(seq(A185812(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Feb 10 2011
-
Mathematica
r[n_, k_] := k*Sum[Binomial[2*j - k - 1, j - 1]*(-1)^(n - j - i)*Binomial[n - i, j]/(n - i), {i, 0, n - k}, {j, k, n - i}]; r[n_, 0] = 1; Table[r[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 21 2013 *)
Formula
R(n,k) = k*Sum_{i=0..(n-k)} (Sum_{j=k..(n-i)} binomial(2*j-k-1,j-1) *(-1)^(n-j-i) *binomial(n-i,j))/(n-i), k>0.
R(n,0)=1.
Comments
Examples
References
Links
Crossrefs
Programs
Haskell
Magma
Maple
Mathematica
PARI
Python
Formula
Extensions