A097344 Numerators in binomial transform of 1/(n+1)^2.
1, 5, 29, 103, 887, 1517, 18239, 63253, 332839, 118127, 2331085, 4222975, 100309579, 184649263, 1710440723, 6372905521, 202804884977, 381240382217, 13667257415003, 25872280345103, 49119954154463, 93501887462903, 4103348710010689, 7846225754967739, 75162749477272151
Offset: 0
Examples
The first values of the binomial transform of 1/(n+1)^2 are 1, 5/4, 29/18, 103/48, 887/300, 1517/360, 18239/2940, 63253/6720, 332839/22680, 118127/5040, 2331085/60984, ...
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..500
- R. J. Mathar, Notes on an attempt to prove that A097344 and A097345 are identical
Programs
-
Maple
f:=n->numer(add( binomial(n,k)/(k+1)^2, k=0..n));
-
Mathematica
Table[HypergeometricPFQ[{1, 1, -n}, {2, 2}, -1] // Numerator, {n, 0, 24}] (* Jean-François Alcover, Oct 14 2013 *)
-
Maxima
a(n):=if n<0 then 1 else 1/((n+1)^2)*((n)*(3*n+1)*a(n-1)-2*(n-1)*(n)*a(n-2)+1); makelist(num(a(n),n,0,10); /* Vladimir Kruchinin, Jun 01 2016 */
-
PARI
A097344(n)=numerator(sum(k=0,n,binomial(n,k)/(k+1)^2)) \\ M. F. Hasler, Jan 25 2008
-
Python
from fractions import Fraction A097344_list, tlist = [1], [Fraction(1,1)] for i in range(1,100): for j in range(len(tlist)): tlist[j] *= Fraction(i,i-j) tlist += [Fraction(1,(i+1)**2)] A097344_list.append(sum(tlist).numerator) # Chai Wah Wu, Jun 04 2015
-
Sage
def A097344_list(size): R, L = [1], [1] inc = sqr = 1 for i in range(1, size): for j in range(i): L[j] *= i / (i - j) inc += 2; sqr += inc L.extend(1 / sqr) R.append(sum(L).numerator()) return R A097344_list(50) # (after Chai Wah Wu) Peter Luschny, Jun 05 2016
Formula
a(n) = numerator(b(n)), b(n) = 1/((n+1)^2)*((n)*(3*n+1)*b(n-1)-2*(n-1)*(n)*b(n-2)+1). - Vladimir Kruchinin, May 31 2016
Extensions
Edited and corrected by Daniel Glasscock (glasscock(AT)rice.edu), Jan 04 2008 and M. F. Hasler, Jan 25 2008
Moved comment on numerators of a logarithmic g.f. over to A097345 - R. J. Mathar, Mar 04 2010
Comments