cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A097399 Maximum of the determinant over all permutations of the entries of a 3 X 3 matrix which are consecutive integers in the range (n-4,n+4).

Original entry on oeis.org

86, 104, 172, 252, 332, 412, 492, 572, 652, 732, 812, 892, 972, 1053, 1134, 1215, 1296, 1377, 1458, 1539, 1620, 1701, 1782, 1863, 1944, 2025, 2106, 2187, 2268, 2349, 2430, 2511, 2592, 2673, 2754, 2835, 2916, 2997, 3078, 3159, 3240, 3321, 3402, 3483, 3564
Offset: 0

Views

Author

Hugo Pfoertner, Aug 19 2004

Keywords

Examples

			a(0)=86 because the maximal determinant that can achieved using the consecutive integers -4,-3,-2,-1,0,1,2,3,4 as matrix elements of a 3 X 3 matrix is det((-4,-3,0),(1,-1,4),(-2,3,2))=86. Another example for a(5)=412 is given in A085000.
		

Crossrefs

Cf. A097400 = corresponding number of different determinants, A097401, A097693 = maximum of determinant if distinct matrix elements are selected from given range, a(5)=A085000(3) maximal determinant with elements (1..n^2).

Programs

  • Mathematica
    Join[{86,104,172,252,332,412,492,572,652,732,812,892},LinearRecurrence[ {2,-1},{972,1053},40]] (* or *) Table[ Det[ Partition[ #,3]]&/@ Permutations[ Range[n-4,n+4]]//Max,{n,0,45}] (* Harvey P. Dale, Jan 14 2015 *)

Formula

G.f.: (x^13+12*x^3+50*x^2-68*x+86) / (x-1)^2. [Colin Barker, Dec 13 2012] [I suspect this is merely a conjecture. - N. J. A. Sloane, Jun 09 2018]

A366158 Number of distinct determinants of 3 X 3 matrices with entries from {0, 1, ..., n}.

Original entry on oeis.org

1, 5, 25, 77, 179, 355, 609, 995, 1497, 2167, 2999, 4069, 5289, 6841, 8595, 10661, 13023, 15777, 18795, 22305, 26085, 30397, 35107, 40381, 45929, 52247, 58929, 66287, 74139, 82767, 91643, 101701, 112013, 123235
Offset: 0

Views

Author

Robert P. P. McKone, Oct 02 2023

Keywords

Comments

These determinants a(n) equivalently represent the leading coefficient (coefficient of term with degree 0) of the characteristic polynomials for such matrices, thereby providing a direct measure and lower bound of the uniqueness of these polynomials within this matrix class.
The maximal determinant counted by a(n) is A033431(n) = 2*n^3.

Crossrefs

Cf. A058331 (distinct determinants for 2 X 2 matrices).
Cf. A365926.
Cf. A033431 (maximal determinant).
Cf. A097400 (distinct consecutive entries in 3 X 3 matrix).

Programs

  • Mathematica
    mat[n_Integer?Positive] := mat[n] = Array[m, {n, n}]; flatMat[n_Integer?Positive] := flatMat[n] = Flatten[mat[n]]; detMat[n_Integer?Positive] := detMat[n] = Det[mat[n]] // FullSimplify; a[d_Integer?Positive, 0] = 1; a[d_Integer?Positive, n_Integer?Positive] := a[d, n] = Length[DeleteDuplicates[Flatten[ParallelTable[Evaluate[detMat[d]], ##] & @@ Table[{flatMat[d][[i]], 0, n}, {i, 1, d^2}]]]]; Table[a[3, n], {n, 0, 9}]
  • Python
    from itertools import product
    def A366158(n): return len({a[0]*(a[4]*a[8] - a[5]*a[7]) - a[1]*(a[3]*a[8] - a[5]*a[6]) + a[2]*(a[3]*a[7] - a[4]*a[6]) for a in product(range(n+1),repeat=9)}) # Chai Wah Wu, Oct 06 2023

Extensions

a(19)-a(26) from Robin Visser, May 08 2025
a(27)-a(33) from Robin Visser, Aug 26 2025
Showing 1-2 of 2 results.