A097431 Integer part of the hypotenuse of right triangles with consecutive prime legs.
3, 5, 8, 13, 17, 21, 25, 29, 37, 42, 48, 55, 59, 63, 70, 79, 84, 90, 97, 101, 107, 114, 121, 131, 140, 144, 148, 152, 157, 169, 182, 189, 195, 203, 212, 217, 226, 233, 240, 248, 254, 263, 271, 275, 280, 290, 307, 318, 322, 326, 333, 339, 347, 359, 367, 376, 381
Offset: 1
Keywords
Examples
If legs = 3,5 then floor(sqrt(9+25)) = 5, the 2nd entry.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A069484.
Programs
-
Magma
[Floor(Sqrt(NthPrime(n)^2 + NthPrime(n+1)^2)): n in [1..60]]; // Vincenzo Librandi, Mar 11 2015
-
Mathematica
Table[Floor[Sqrt[Prime[n]^2 + Prime[n + 1]^2]], {n, 60}] (* Vincenzo Librandi, Mar 11 2015 *) Floor[Sqrt[Total[#^2]]]&/@Partition[Prime[Range[60]],2,1] (* Harvey P. Dale, Mar 30 2024 *)
-
PARI
a(n) = for(j=1,n,x=prime(j);y=prime(j+1);print1(floor(sqrt(x^2+y^2))","))
Formula
a(n) = floor(sqrt(prime(n)^2 + prime(n+1)^2)) = floor(sqrt(A069484(n))).