A097490
Primes which are two greater than A097489 terms.
Original entry on oeis.org
5, 17, 167, 302946354048717875530381041444257, 17164738545781348456175905084853738838912866540727619406614703260339837793050935010265073947
Offset: 1
a(3) = 167 = (Product_{k=1..3} A001359(k)) + 2 = 3 * 5 * 11 + 2 = A097489(3) + 2. - _Hartmut F. W. Hoft_, Apr 27 2021
-
step[{list_, q_}] := Module[{p=NextPrime[q]}, {Join[list, If[PrimeQ[p+2], {{p,p+2}}, {}]], p}]
smallerTwin[n_] := First[Transpose[First[NestWhile[step, {{{3, 5}}, 3}, Length[First[step[#]]]<=n&]]]]
a097489[n_] := Rest[FoldList[Times, 1, smallerTwin[n]]]
a097490[n_] := Select[Map[#+2&, a097489[n]], PrimeQ]
a097490[39] (* Hartmut F. W. Hoft, Apr 27 2021 *)
-
fp(n) = p=1;for(x=1,n,p*=twinl(x);if(isprime(p+2),print1(p+2", ")))
twinl(n) = { local(c,x); c=0; x=1; while(c
A128874
Numbers k such that 16 + the product of the first k lesser twin primes (A097489) is prime.
Original entry on oeis.org
Twinl#(3) + 16 = 3*5*11+16 = 181 is prime so 3 is in the sequence.
-
next[n_] := Module[{k = n + 1}, While[! (PrimeQ[k] && PrimeQ[k + 2]), k++]; k]; seq[kmax_] := Module[{r = 1, p = 1, s = {}}, Do[p = next[p]; r *= p; If[PrimeQ[r + 16], AppendTo[s, k]], {k, 1, kmax}]; s]; seq[500] (* Amiram Eldar, Jul 07 2024 *)
-
twinl(n) = { local(c,x); c=0; x=1; while(cCino Hilliard, May 08 2007
-
lista(nn) = { for(n=1, nn, if (ispseudoprime(16+prod(i=1, n, twinl(i))), print1(n, ", ")));} \\ Michel Marcus, Feb 10 2014
A097493
Primes which are two greater than A097492 terms.
Original entry on oeis.org
7, 37, 457, 8647, 51315414607
Offset: 1
a(4) = 8647 = (Product_{k=1..4} A006512(k)) + 2 = 5*7*13*19 + 2 = A097492(4) + 2. - _Hartmut F. W. Hoft_, Apr 27 2021
-
step[{list_, q_}] := Module[{p=NextPrime[q]}, {Join[list, If[PrimeQ[p+2], {{p,p+2}}, {}]], p}]
largerTwin[n_] := Last[Transpose[First[NestWhile[step, {{{3, 5}}, 3}, Length[First[step[#]]]<=n&]]]]
a097492[n_] := Rest[FoldList[Times, 1, largerTwin[n]]]
a097493[n_] := Select[Map[#+2&, a097492[n]], PrimeQ]
a097493[68] (* Hartmut F. W. Hoft, Apr 27 2021 *)
-
fu(n) = p=1;for(x=1,n,p*=twinu(x);if(isprime(p+2),print1(p+2", ")))
twinu(n) = { local(c,x); c=0; x=1; while(c
A097492
a(n) = product of first n terms of A006512.
Original entry on oeis.org
5, 35, 455, 8645, 267995, 11523785, 702950885, 51315414605, 5285487704315, 576118159770335, 80080424208076565, 12092144055419561315, 2188678074030940598015, 422414868287971535416895
Offset: 1
-
Rest[FoldList[Times,1,Transpose[Select[Partition[Prime[Range[100]],2,1], Last[#]- First[#] == 2&]][[2]]]] (* Harvey P. Dale, Nov 02 2011 *)
-
fu(n) = p=1;for(x=1,n,p*=twinu(x);print1(p",")) \The n-th upper twin prime twinu(n) = { local(c,x); c=0; x=1; while(c
A128817
Primes which are 4 greater than the product of lesser twin primes.
Original entry on oeis.org
7, 19, 81349, 3335149, 196773559, 13970922409, 150983758430839
Offset: 1
twinl#(2) = 3*5=15. 15+4 = 19 prime and the second term in the table.
Showing 1-5 of 5 results.
Comments