cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A174171 A generalized Chebyshev transform of the Motzkin numbers A001006.

Original entry on oeis.org

1, 1, 4, 8, 25, 65, 197, 571, 1753, 5351, 16746, 52626, 167547, 536559, 1732272, 5622960, 18357211, 60205319, 198323708, 655787680, 2176141555, 7244106347, 24185285341, 80960692691, 271685400443, 913784117809, 3079889039230
Offset: 0

Views

Author

Paul Barry, Mar 10 2010

Keywords

Comments

Hankel transform is the (1,8) Somos-4 sequence A097495(n+2).

Crossrefs

Cf. A001006.

Programs

  • Mathematica
    Table[Sum[Binomial[n - k, k] 2^k * Hypergeometric2F1[(1 - #)/2, -#/2, 2, 4] &[n - 2 k], {k, 0, Floor[n/2]}], {n, 0, 26}] (* Michael De Vlieger, Feb 02 2017, after Peter Luschny at A001006 *)

Formula

G.f.: (1-x-2*x^2-sqrt(1-2*x-7*x^2+4*x^3+4*x^4))/(2*x^2) = (1/(1-2*x))*M(x/(1-2*x^2)), M(x) the g.f. of A010006.
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k) * 2^k * A001006(n-2k).
Conjecture: (n+2)*a(n) -(2*n+1)*a(n-1) +7*(1-n)*a(n-2) +2*(2*n-5)*a(n-3) +4*(n-4)*a(n-4)=0. - R. J. Mathar, Sep 30 2012
a(0) = a(1) = 1; a(n) = a(n-1) + 2 * a(n-2) + Sum_{k=0..n-2} a(k) * a(n-k-2). - Ilya Gutkovskiy, Nov 09 2021
a(n) ~ 17^(1/4) * (3 + sqrt(17))^(n+1) / (sqrt(Pi) * n^(3/2) * 2^(n+2)). - Vaclav Kotesovec, Nov 11 2021

A376024 a(0..4) = 1 and a(n) = (a(n-2)^2 + a(n-3)^2 + a(n-2)*(3*a(n-3) + a(n-4)) + a(n-1)*(a(n-3) - a(n-5)))/(a(n-4) + a(n-5)) for n > 4.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 3, 11, 35, 83, 545, 2513, 13905, 152721, 1087873, 14651923, 238834051, 3135275371, 91466933731, 2155382231811, 63058059937761, 3261572372004353, 120654520736448833, 8395343248160222081, 661217270644238022305, 46110296193095128622723, 6786635441262507324649635
Offset: 0

Views

Author

Thomas Scheuerle, Sep 06 2024

Keywords

Comments

An example of how a Somos recurrence can be generalized such that proving its integrality looks more difficult in the first glance. In this example the Somos-4 recurrence b(n) = (b(n-1) * b(n-3) + b(n-2)^2) / b(n-4) was modified by substitution of b(n-k) with (a(n-k) + a(n-k-1)).
This sequence is not a divisibility sequence unlike Somos-4 sequences are.

Crossrefs

Cf. A006720, A097495 ( first 6 values coincidence with odd terms ).

Programs

  • PARI
    a=vector(26); a[1]=a[2]=a[3]=a[4]=a[5]=1; for(n=6, #a, a[n]=(a[n-2]^2+a[n-3]^2+a[n-2]*(3*a[n-3]+a[n-4])+a[n-1]*(a[n-3]-a[n-5]))/(a[n-4]+a[n-5])); a

Formula

(a(n) + a(n+1))/2 = A006720(n).
Showing 1-2 of 2 results.