cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097556 Number of positive words of length n in the monoid Br_9 of positive braids on 10 strands.

Original entry on oeis.org

1, 9, 56, 279, 1223, 4932, 18833, 69345, 249166, 880525, 3076295, 10662459, 36749785, 126161246, 431880044, 1475412473, 5032964258, 17150277106, 58395929325, 198723871661, 675989712225, 2298799014859, 7815699898677, 26568450635871
Offset: 0

Views

Author

D n Verma, Aug 16 2004

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50);
    Coefficients(R!( (1+x^2)^7/(1-9*x+32*x^2-63*x^3+84*x^4-81*x^5+56*x^6-27*x^7+8*x^8-x^9) )); // G. C. Greubel, Apr 20 2021
    
  • Mathematica
    CoefficientList[Series[(1+x^2)^7/(1-9*x+32*x^2-63*x^3+84*x^4-81*x^5+56*x^6-27*x^7+8*x^8-x^9), {x,0,50}], x] (* G. C. Greubel, Apr 20 2021 *)
  • Sage
    def A097556_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x^2)^7/(1-9*x+32*x^2-63*x^3+84*x^4-81*x^5+56*x^6-27*x^7+8*x^8-x^9) ).list()
    A097556_list(50) # G. C. Greubel, Apr 20 2021

Formula

G.f.: (1 +x^2)^7/(1 -9*x +32*x^2 -63*x^3 +84*x^4 -81*x^5 +56*x^6 -27*x^7 +8*x^8 -x^9).

Extensions

Edited and extended by Max Alekseyev, Jun 17 2011