A097556 Number of positive words of length n in the monoid Br_9 of positive braids on 10 strands.
1, 9, 56, 279, 1223, 4932, 18833, 69345, 249166, 880525, 3076295, 10662459, 36749785, 126161246, 431880044, 1475412473, 5032964258, 17150277106, 58395929325, 198723871661, 675989712225, 2298799014859, 7815699898677, 26568450635871
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-32,63,-84,81,-56,27,-8,1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+x^2)^7/(1-9*x+32*x^2-63*x^3+84*x^4-81*x^5+56*x^6-27*x^7+8*x^8-x^9) )); // G. C. Greubel, Apr 20 2021 -
Mathematica
CoefficientList[Series[(1+x^2)^7/(1-9*x+32*x^2-63*x^3+84*x^4-81*x^5+56*x^6-27*x^7+8*x^8-x^9), {x,0,50}], x] (* G. C. Greubel, Apr 20 2021 *)
-
Sage
def A097556_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+x^2)^7/(1-9*x+32*x^2-63*x^3+84*x^4-81*x^5+56*x^6-27*x^7+8*x^8-x^9) ).list() A097556_list(50) # G. C. Greubel, Apr 20 2021
Formula
G.f.: (1 +x^2)^7/(1 -9*x +32*x^2 -63*x^3 +84*x^4 -81*x^5 +56*x^6 -27*x^7 +8*x^8 -x^9).
Extensions
Edited and extended by Max Alekseyev, Jun 17 2011