cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097564 a(n) = (a(n-1) mod 2)*a(n-1) + a(n-2) with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 4, 3, 7, 10, 7, 17, 24, 17, 41, 58, 41, 99, 140, 99, 239, 338, 239, 577, 816, 577, 1393, 1970, 1393, 3363, 4756, 3363, 8119, 11482, 8119, 19601, 27720, 19601, 47321, 66922, 47321, 114243, 161564, 114243, 275807, 390050, 275807, 665857
Offset: 0

Views

Author

Gerald McGarvey, Aug 27 2004

Keywords

Comments

The sequences a(2), a(5), ... a(1+3*n) ... and a(4), a(7), ... a(4 + 3n) ... are both A001333 (numerators of continued fraction convergents to sqrt(2)). The sequence a(0), a(3), a(6), ... a(3+3*n) ... is twice A000129 (the Pell nos. or the denominators of continued fraction convergents to sqrt(2).), also is A052542 starting w/ offset 1.

Programs

  • Magma
    [n le 2 select n-1 else (Self(n-1) mod 2)*Self(n-1)+Self(n-2): n in [1..50]]; // Bruno Berselli, Jun 02 2016
    
  • Maple
    m:=50; S:=series( x*(1+x+2*x^2-x^3+x^4)/(1-2*x^3-x^6), x, m+1):
    seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Apr 20 2021
  • Mathematica
    nxt[{a_,b_}]:={b,Mod[b,2]*b+a}; NestList[nxt,{0,1},50][[All,1]] (* or *) LinearRecurrence[{0,0,2,0,0,1},{0,1,1,2,1,3},50] (* Harvey P. Dale, Aug 15 2017 *)
  • PARI
    concat(0, Vec(x*(1+x+2*x^2-x^3+x^4)/(1-2*x^3-x^6) + O(x^100))) \\ Colin Barker, Jun 02 2016
    
  • Sage
    def A097564_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1+x+2*x^2-x^3+x^4)/(1-2*x^3-x^6) ).list()
    A097564_list(50) # G. C. Greubel, Apr 20 2021

Formula

From Colin Barker, Jun 01 2016: (Start)
a(n) = 2*a(n-3) + a(n-6) for n>5.
G.f.: x*(1+x+2*x^2-x^3+x^4) / (1-2*x^3-x^6). (End)