cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097581 a(n) = 3*2^floor((n-1)/2) + (-1)^n.

Original entry on oeis.org

2, 4, 5, 7, 11, 13, 23, 25, 47, 49, 95, 97, 191, 193, 383, 385, 767, 769, 1535, 1537, 3071, 3073, 6143, 6145, 12287, 12289, 24575, 24577, 49151, 49153, 98303, 98305, 196607, 196609, 393215, 393217, 786431, 786433, 1572863, 1572865
Offset: 1

Views

Author

Pierre CAMI, Sep 20 2004

Keywords

Comments

Previous name was: a(1)=2 then if n even a(n)=a(n-1)+2 and if n odd a(n)=a(n-2)+a(n-1)-1.
This sequence a(n)=A016116(n-1)+A086341(n). Generalization: starting with a(1) even then if n even a(n)=a(n-1)+2 and if n odd a(n)=a(n-2)+a(n-1)-1 you get a new sequence as a(1) increases. But if a(1) is odd, you get always the same sequence with only less values as a(1) increases. If a(1) is even, the sequence difference between two sequences with different but consecutive a(1) is the sequence of powers of 2 = 2,2,4,4,8,8,16,16,32,32,......

Examples

			Starting with a(1)=4 the new sequence is 4,6,9,11,19,21,39,41,79,81,159,161
The sequence difference between sequence starting with a(1)=4 and the sequence starting with a(1)=2 is 2,2,4,4,8,8,16,16,32,32,64,64,.......
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-1,2,2},{2,4,5},40] (* Harvey P. Dale, Aug 10 2011 *)
    Table[3*2^(Floor[(n - 1)/2]) + (-1)^n, {n, 1,50}] (* G. C. Greubel, Apr 18 2017 *)
  • PARI
    a(n)=3*2^floor((n-1)/2)+(-1)^n

Formula

From R. J. Mathar, Nov 13 2009: (Start)
a(n) = -a(n-1) + 2*a(n-2) + 2*a(n-3).
G.f.: x*(2+6*x+5*x^2)/((1+x)*(1-2*x^2)). (End)

Extensions

Equation in the comment corrected by R. J. Mathar, Nov 13 2009
Better name from Ralf Stephan, Aug 19 2013