A097581 a(n) = 3*2^floor((n-1)/2) + (-1)^n.
2, 4, 5, 7, 11, 13, 23, 25, 47, 49, 95, 97, 191, 193, 383, 385, 767, 769, 1535, 1537, 3071, 3073, 6143, 6145, 12287, 12289, 24575, 24577, 49151, 49153, 98303, 98305, 196607, 196609, 393215, 393217, 786431, 786433, 1572863, 1572865
Offset: 1
Keywords
Examples
Starting with a(1)=4 the new sequence is 4,6,9,11,19,21,39,41,79,81,159,161 The sequence difference between sequence starting with a(1)=4 and the sequence starting with a(1)=2 is 2,2,4,4,8,8,16,16,32,32,64,64,.......
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (-1,2,2).
Programs
-
Mathematica
LinearRecurrence[{-1,2,2},{2,4,5},40] (* Harvey P. Dale, Aug 10 2011 *) Table[3*2^(Floor[(n - 1)/2]) + (-1)^n, {n, 1,50}] (* G. C. Greubel, Apr 18 2017 *)
-
PARI
a(n)=3*2^floor((n-1)/2)+(-1)^n
Formula
From R. J. Mathar, Nov 13 2009: (Start)
a(n) = -a(n-1) + 2*a(n-2) + 2*a(n-3).
G.f.: x*(2+6*x+5*x^2)/((1+x)*(1-2*x^2)). (End)
Extensions
Equation in the comment corrected by R. J. Mathar, Nov 13 2009
Better name from Ralf Stephan, Aug 19 2013
Comments