cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097589 a(n) = Sum_{i=1..n} A005235(i).

Original entry on oeis.org

3, 8, 15, 28, 51, 68, 87, 110, 147, 208, 275, 336, 407, 454, 561, 620, 681, 790, 879, 982, 1061, 1212, 1409, 1510, 1613, 1846, 2069, 2196, 2419, 2610, 2773, 3002, 3645, 3884, 4041, 4208, 4647, 4886, 5085, 5276, 5475, 5858, 6091, 6842, 7155, 7928, 8535, 8848
Offset: 1

Views

Author

Pierre CAMI, Aug 29 2004

Keywords

Comments

The primes and fortunate numbers in the partial sum of the fortunate numbers (A005235): primes begin: 3, 1061, 1409, 1613, 2069, 6091; fortunate numbers in partial sum begin: 3, 1061, 1409, 1613, 6091, and these subsequences are not disjoint. [Jonathan Vos Post, Jan 27 2010]

Crossrefs

Programs

  • Mathematica
    NextPrime[ n_Integer] := Block[{k}, k = n + 1; While[ !PrimeQ[ k ], k++ ]; k ]; Fortunate[ n_Integer] := Block[{p = Product[ Prime[i], {i, 1, n} ] + 1, q}, q = NextPrime[p]; q - p + 1 ]; t = Table[ Fortunate[ n ], {n, 1, 48}]; Table[Plus @@ Take[t, n], {n, 48}] (* Robert G. Wilson v, Sep 04 2004 *)
    Accumulate[NextPrime[#]-#+1&/@(Rest[FoldList[Times,1,Prime[Range[ 60]]]]+ 1)] (* Harvey P. Dale, May 27 2014 *)

Formula

Let F(n) := a(n)/A007504(n). Conjecture: as n tends to infinity F(n) tends to Pi/2 with Pi=3.14159......

Extensions

More terms from Robert G. Wilson v, Sep 04 2004