A097621 In canonical prime factorization of n replace p^e with its index in A000961.
1, 2, 3, 4, 5, 6, 6, 7, 8, 10, 9, 12, 10, 12, 15, 11, 12, 16, 13, 20, 18, 18, 14, 21, 15, 20, 16, 24, 17, 30, 18, 19, 27, 24, 30, 32, 20, 26, 30, 35, 21, 36, 22, 36, 40, 28, 23, 33, 24, 30, 36, 40, 25, 32, 45, 42, 39, 34, 26, 60, 27, 36, 48, 28, 50, 54, 29, 48, 42, 60, 30, 56, 31
Offset: 1
Examples
n=600 = 2^3 * 3 * 5^2 -> A095874(8)*A095874(3)*A095874(25) = 7 * 3 * 15 = 315.
Links
- Ivan Neretin, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
N:= 1000: # to get a(1) to a(N) Primes:= select(isprime,[2, seq(2*i+1,i=1..(N-1)/2)]): PP:= sort([1,seq(seq(p^k, k=1..floor(log[p](N))),p=Primes)]): for n from 1 to nops(PP) do B[PP[n]]:= n od: seq(mul(B[f[1]^f[2]],f=ifactors(n)[2]),n=1..N); # Robert Israel, Sep 02 2015
-
Mathematica
pp = Select[Range@100, Length[FactorInteger[#]] == 1 &]; a = Table[Times @@ (Position[pp, #][[1, 1]] & /@ (#[[1]]^#[[2]] & /@ FactorInteger[n])), {n, 73}] (* Ivan Neretin, Sep 02 2015 *)
-
PARI
f(n) = if(isprimepower(n), sum(i=1, logint(n, 2), primepi(sqrtnint(n, i)))+1, n==1); \\ A095874 a(n) = my(fr=factor(n)); for (k=1, #fr~, fr[k,1] = f(fr[k,1]^fr[k,2]); fr[k,2] = 1); factorback(fr); \\ Michel Marcus, May 29 2021 A097621(n)=vecprod([A095874(f[1]^f[2])|f<-factor(n)~]) \\ M. F. Hasler, Jun 15 2021
-
Python
from math import prod from sympy import primepi, integer_nthroot, factorint def A097621(n): return prod(1+int(primepi(m:=p**e)+sum(primepi(integer_nthroot(m,k)[0]) for k in range(2,m.bit_length()))) for p,e in factorint(n).items()) # Chai Wah Wu, Jan 19 2025
Formula
Extensions
Definition corrected by M. F. Hasler, Jun 16 2021
Example corrected by Ray Chandler, Jun 30 2021
Comments