cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A097638 a(n) is the smallest n-digit number m such that 10*m+1, 10*m+3, 10*m+7 & 10*m+9 are primes.

Original entry on oeis.org

1, 10, 148, 1300, 10111, 100234, 1001395, 10000546, 100002526, 1000005742, 10000000753, 100000012369, 1000000005658, 10000000094572, 100000000006744, 1000000000134649, 10000000000032523, 100000000000043071, 1000000000000213927, 10000000000000256116, 100000000000000008172
Offset: 1

Views

Author

Farideh Firoozbakht, Aug 18 2004

Keywords

Comments

a(n) is the smallest n-digit term of A007811. a(50)=10^49+10718757, can you find a(100)?

Examples

			a(4)=1300 because 13001,13003,13007 & 13009 are primes and 1300 is the smallest 4-digit number with this property.
		

Crossrefs

Programs

  • Magma
    F:= func< n,m | IsPrime(10^n +10*m+1) and IsPrime(10^n +10*m+3) and IsPrime(10^n +10*m+7) and IsPrime(10^n +10*m+9) >;
    function a(n)
      t:=0;
        while not F(n,t) do
          t+:=1;
        end while;
      return t+10^(n-1);
    end function;
    [a(n): n in [1..15]]; // G. C. Greubel, Aug 11 2023
    
  • Mathematica
    a[n_]:=(For[m=0, !(PrimeQ[10^n+10m+1] && PrimeQ[10^n+10m+3] && PrimeQ[10^n+10m+7] && PrimeQ[10^n+10m+9]), m++ ]; 10^(n-1)+m);
    Table[a[n], {n, 28}]
  • PARI
    isok(m, n) = my(s=10^(n-1)+ m); ispseudoprime(10*s+1) && ispseudoprime(10*s+3) && ispseudoprime(10*s+7) && ispseudoprime(10*s+9);
    a(n) = my(m=0); while (!isok(m, n), m++); 10^(n-1)+m; \\ Michel Marcus, Aug 09 2023
    
  • SageMath
    def isp(n,m,j): return is_prime(10^n +10*m+j)
    def f(n,m): return isp(n,m,1) and isp(n,m,3) and isp(n,m,7) and isp(n,m,9)
    def b(n):
        k=0
        while not f(n,k):
            k+=1
        return k
    def A097638(n): return b(n) + 10^(n-1)
    for n in range(1,23):
        print(A097638(n), end=", ") # G. C. Greubel, Aug 11 2023

Formula

Let f(n, m) be the set of primes 10^n + 10*m + 1, 10^n + 10*m + 3, 10^n + 10*m + 7, and 10^n + 10*m + 9, and let b(n) be the smallest number m that is not in f(n, m). a(n) is then 10^(n-1) + b(n).

Extensions

More terms from Michel Marcus, Aug 09 2023
Showing 1-1 of 1 results.