A097648 a(n) is the least non-palindromic number m such that phi(m)=phi(reversal(m))=4*10^(n+2), or 0 if no such number exists.
10040, 110440, 1014040, 11154440, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
a(4)=11154440 because phi(11154440)=phi(04445111)=4000000 and 11154440 is the earliest non-palindromic number with this property.
Links
- C. Rivera, f(p)=f(p') , puzzle 282
Crossrefs
Subsequence of A097647.
Programs
-
Mathematica
a[n_]:=(For[m=4*10^(n+2), !(m!=FromDigits[Reverse[IntegerDigits[m]]] &&EulerPhi[m]==EulerPhi[FromDigits[Reverse[IntegerDigits [m]]]]==4*10^(n+2)), m++ ];m);Do[Print[a[n]], {n, 4}]
Formula
a[n_]:=(For[m=4*10^(n+2), !(m!=FromDigits[Reverse[IntegerDigits[m]]] &&EulerPhi[m]==EulerPhi[FromDigits[Reverse[IntegerDigits [m]]]]==4*10^(n+2)), m++ ];m)
Extensions
Better definition and more terms from David Wasserman, Dec 28 2007
a(27)-a(49) from Max Alekseyev, Oct 17 2008; Aug 15 2013; Jun 14 2022
Comments