A097657 Fibonacci sequence with first two terms 11 and 23.
11, 23, 34, 57, 91, 148, 239, 387, 626, 1013, 1639, 2652, 4291, 6943, 11234, 18177, 29411, 47588, 76999, 124587, 201586, 326173, 527759, 853932, 1381691, 2235623, 3617314, 5852937, 9470251, 15323188, 24793439
Offset: 0
Links
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (1, 1).
Crossrefs
Cf. A000045.
Programs
-
Mathematica
a[0] := 11; a[1] := 23; a[n_] := a[n - 1] + a[n - 2]; Table[a[n], {n, 0, 25}] (* Stefan Steinerberger, Mar 06 2006 *)
-
PARI
a(n)=([0,1; 1,1]^n*[11;23])[1,1] \\ Charles R Greathouse IV, Feb 20 2017
Formula
a(n) = a(n-1) + a(n-2) for n > 1, a(0) = 11, a(1) = 23.
G.f.: (11 + 12*x)/(1 - x - x^2). - Philippe Deléham, Nov 20 2008
a(n) = h*Fibonacci(n+k) + Fibonacci(n+k-h) with h=7, k=3. - Bruno Berselli, Feb 20 2017
Extensions
More terms from Stefan Steinerberger, Mar 06 2006