cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A282465 a(n) = 11*Fibonacci(n+3) + Fibonacci(n-8) with n>=0.

Original entry on oeis.org

1, 46, 47, 93, 140, 233, 373, 606, 979, 1585, 2564, 4149, 6713, 10862, 17575, 28437, 46012, 74449, 120461, 194910, 315371, 510281, 825652, 1335933, 2161585, 3497518, 5659103, 9156621, 14815724, 23972345, 38788069, 62760414, 101548483, 164308897, 265857380, 430166277
Offset: 0

Views

Author

Bruno Berselli, Feb 20 2017

Keywords

Comments

Similar sequences with the formula h*Fibonacci(n+k) + Fibonacci(n+k-h):
h= 1, k=-1: A000045;
h= 2, k= 1: A013655;
h= 3, k=-2: A118658 = 2*A212804;
h= 4, k= 2: A022379 = 3*A000204;
h= 5, k= 1: A022113;
h= 6, k= 2: A022125;
h= 7, k= 3: A097657;
h= 8, k= 2: A022355 = 21*A000045;
h= 9, k= 3: 10, 32, 42, 74, 116, 190, 306, 496, 802, ... = 2*A022140;
h=10, k= 3: 33, 22, 55, 77, 132, 209, 341, 550, 891, ... = 11*A013655;
h=11, k= 3: this sequence.

Crossrefs

Cf. sequences with g.f. (1 + r*x)/(1 - x - x^2) for r = 2..31, respectively: A000204, A000285, A022095 - A022110, A022391 - A022402.

Programs

  • Magma
    [11*Fibonacci(n+3)+Fibonacci(n-8): n in [0..40]];
    
  • Mathematica
    Table[11 Fibonacci[n + 3] + Fibonacci[n - 8], {n, 0, 40}]
    LinearRecurrence[{1,1},{1,46},36] (* or *) CoefficientList[Series[(1 + 45*x)/(1 - x - x^2) , {x,0,35}],x] (* Indranil Ghosh, Feb 22 2017 *)
  • PARI
    a(n) = 11*fibonacci(n+3) + fibonacci(n-8) \\ Indranil Ghosh, Feb 23 2017

Formula

G.f.: (1 + 45*x)/(1 - x - x^2).
a(n) = a(n-1) + a(n-2).
a(n) = a(i)*Fibonacci(n-i+1) + a(i-1)*Fibonacci(n-i). Examples:
for i= 3, a(3)=93, a(2)= 47: a(n) = 93*Fibonacci(n-2) + 47*Fibonacci(n-3);
for i=-1, a(-1)=45, a(-2)=-44: a(n) = 45*Fibonacci(n+2) - 44*Fibonacci(n+1).
Other formulae:
a(n) = 44*Fibonacci(n) + Fibonacci(n+2),
a(n) = 45*Fibonacci(n) + Fibonacci(n+1),
a(n) = 46*Fibonacci(n) + Fibonacci(n-1),
a(n) = 47*Fibonacci(n) - Fibonacci(n-2).
a(n) = ((91 + sqrt(5))*((1 + sqrt(5))/2)^n - (91 - sqrt(5))*((1 - sqrt(5))/2)^n)/sqrt(20).

A098127 Fibonacci sequence with a(1) = 7 and a(2) = 26.

Original entry on oeis.org

7, 26, 33, 59, 92, 151, 243, 394, 637, 1031, 1668, 2699, 4367, 7066, 11433, 18499, 29932, 48431, 78363, 126794, 205157, 331951, 537108, 869059, 1406167, 2275226, 3681393, 5956619, 9638012, 15594631, 25232643, 40827274, 66059917, 106887191, 172947108
Offset: 1

Views

Author

Parthasarathy Nambi, Sep 26 2004

Keywords

Examples

			a(3) = a(2) + a(1) = 26 + 7 = 33.
		

Crossrefs

Programs

Formula

a(n) = a(n-1) + a(n-2).
G.f.: (7x + 19x^2)/(1 - x - x^2). - Emeric Deutsch, Apr 16 2005

Extensions

More terms from Emeric Deutsch, Apr 16 2005

A217762 Square array T, read by antidiagonals: T(n,k) = F(n) + 2*F(k) where F(n) is the n-th Fibonacci number.

Original entry on oeis.org

0, 2, 1, 2, 3, 1, 4, 3, 3, 2, 6, 5, 3, 4, 3, 10, 7, 5, 4, 5, 5, 16, 11, 7, 6, 5, 7, 8, 26, 17, 11, 8, 7, 7, 10, 13, 42, 27, 17, 12, 9, 9, 10, 15, 21, 68, 43, 27, 18, 13, 11, 12, 15, 23, 34, 110, 69, 43, 28, 19, 15, 14, 17, 23, 36, 55, 178, 111, 69, 44, 29, 21
Offset: 0

Views

Author

Philippe Deléham, Apr 07 2013

Keywords

Examples

			Square array begins:
...0....2....2....4....6...10...16...26...42...
...1....3....3....5....7...11...17...27...43...
...1....3....3....5....7...11...17...27...43...
...2....4....4....6....8...12...18...28...44...
...3....5....5....7....9...13...19...29...45...
...5....7....7....9...11...15...21...31...47...
...8...10...10...12...14...18...24...34...50...
..13...15...15...17...19...23...29...39...55...
..21...23...23...25...27...31...37...47...63...
..34...36...36...38...40...44...50...60...76...
..55...57...57...59...61...65...71...81...97...
..89...91...91...93...95...99..105..115..131...
.144..146..146..148..150..154..160..170..186...
...
		

Crossrefs

Formula

T(n,0) = A000045(n).
T(1,k) = A001588(k).
T(n,1) = T(n,2) = A157725(n).
T(n,3) = A157727(n).
T(n,n)= A022086(n) = 3*A000045(n).
T(n+1,n) = A000032(n+1) = A000204(n+1).
T(n+2,n) = A000285(n).
T(n+3,n) = A013655(n+1) = A001060(n+1).
T(n+4,n) = A021120(n).
T(n+5,n) = A022088(n+2) = 5*A000045(n+2).
T(n+6,n) = A022097(n+2).
T(n+7,n) = A022122(n+2).
T(n+8,n) = 3*A013655(n+2).
T(n+9,n) = A097657(n+2).
T(n+10,n) = A022118(n+4).
T(n,n+1) = A000045(n+3).
T(n,n+2) = A013655(n+1) = A001060(n+1).
T(n,n+3) = A000032(n+3).
T(n,n+4) = A022095(n+2).
T(n,n+5) = A022120(n+2).
T(n,n+6) = A022136(n+2).
T(n,n+7) = A022098(n+4).
T(n,n+8) = A022380(n+4).
T(n,n+9) = A206419(n+6).
Sum(T(n-k,k), 0<=k<=n) = 3*A000071(n+2).
Showing 1-3 of 3 results.