cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A097401 Largest achievable determinant of a 3 X 3 matrix whose elements are 9 distinct nonnegative integers chosen from the range 0..n.

Original entry on oeis.org

332, 528, 796, 1148, 1596, 2152, 2828, 3636, 4588, 5696, 6972, 8428, 10076, 11928, 13996, 16292, 18828, 21616, 24668, 27996, 31612, 35528, 39756, 44308, 49196, 54432, 60028, 65996, 72348, 79096, 86252, 93828, 101836, 110288, 119196, 128572
Offset: 8

Views

Author

Hugo Pfoertner, Aug 24 2004

Keywords

Examples

			a(10)=796 because no larger determinant of a 3 X 3 matrix b(j,k) with distinct elements 0 <= b(j,k) <= 10, j=1..3, k=1..3 can be built than det((10,5,1), (2,9,7), (6,0,8)) = 796.
		

Crossrefs

Other maximal 3 X 3 determinants: Cf. a(8)=A097399(4)=332: 3 X 3 matrix filled with consecutive integers, A097693: 3 X 3 matrix filled with integers from -n...n, A097694, A097695, A097696: corresponding sequences for 4 X 4 matrices.

Programs

  • Magma
    I:=[332, 528, 796, 1148]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 25 2012
    
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{332,528,796,1148},40] (* Vincenzo Librandi, Jun 25 2012 *)
  • PARI
    a(n)=2*n^3-18*n^2+68*n-84 \\ Charles R Greathouse IV, Oct 07 2015

Formula

An optimal choice and arrangement is of the following form: det((n, n-5, 1), (2, n-1, n-3), (n-4, 0, n-2)) = 2*(n^3 - 9*n^2 + 34*n - 42). There are 35 other equivalent arrangements corresponding to permutations of rows and columns.
a(n) = 2*n^3 - 18*n^2 + 68*n - 84.
G.f.: 4*x^8*(83 - 200*x + 169*x^2 - 49*x^3)/(1-x)^4. - Colin Barker, Mar 29 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 25 2012

A097693 Largest achievable determinant of a 3 X 3 matrix whose elements are 9 distinct integers chosen from the range -n...n.

Original entry on oeis.org

86, 216, 438, 776, 1254, 1896, 2726, 3768, 5046, 6584, 8406, 10536, 12998, 15816, 19014, 22616, 26646, 31128, 36086, 41544, 47526, 54056, 61158, 68856, 77174, 86136, 95766, 106088, 117126, 128904, 141446, 154776, 168918, 183896, 199734
Offset: 4

Views

Author

Hugo Pfoertner, Aug 24 2004

Keywords

Examples

			a(5)=216 because no larger determinant of a 3 X 3 integer matrix b(j,k) with distinct elements -5<=b(j,k)<=5,j=1..3,k=1..3 can be built than det((-5,-4,1),(2,-2,5),(-3,4,3))=216.
		

Crossrefs

Other maximal 3 X 3 determinants: Cf. A097399: 3 X 3 matrix filled with consecutive integers, A097401: 3 X 3 matrix filled with integers from 0...n, A097694, A097695, A097696: corresponding sequences for 4 X 4 matrices.

Formula

An optimal choice and arrangement is of the following form: det((-n, 1-n, n-4), (n-3, 3-n, n), (2-n, n-1, n-2))=2*(2*n^3-7*n^2+6*n+3). There are 35 other equivalent arrangements corresponding to permutations of rows and columns.
G.f.: 2*x^4*(43-64*x+45*x^2-12*x^3)/(1-x)^4. - Colin Barker, Mar 29 2012

A097695 Largest achievable determinant of a 4 X 4 matrix whose elements are 16 distinct integers chosen from the range -n...n.

Original entry on oeis.org

10324, 19920, 35791, 60122, 95610, 145362
Offset: 8

Views

Author

Hugo Pfoertner, Aug 25 2004

Keywords

Comments

The formula for a(12) and a(13) gives lower bounds for the next terms a(14)>=212802, a(15)>=301770.

Examples

			a(8)=10324 because no larger determinant of a 4 X 4 integer matrix b(j,k) with distinct elements -8<=b(j,k)<=8,j=1..4,k=1..4 can be built than
det((8,4,3,2),(-1,7,-4,-6),(5,-5,-7,-2),(1,-3,6,-8))=10324.
		

Crossrefs

Other maximal 4 X 4 determinants: Cf. A097694: 4 X 4 matrix filled with integers from 0...n, A097696: 4 X 4 matrix filled with consecutive integers. A097399, A097401, A097693: corresponding sequences for 3 X 3 matrices.

Formula

Optimal choices and arrangements: n=8 see example, n=9, 10, 11: det((n, n-1, 7-n, n-5), (5-n, n-4, 1-n, 4-n), (n-2, 2-n, 3-n, 6-n), (n-6, n-7, n-3, -n))= 16*n^4-224*n^3+1334*n^2-3795*n+4341. n=12, 13: det((n, n-5, n-3, 6-n), (n-6, -n, 5-n, 3-n), (7-n, n-1, 4-n, 2-n), (n-2, n-7, 1-n, n-4))= 2*(8*n^4-112*n^3+670*n^2-1947*n+2325). For each n there are (4!)^2=576 equivalent arrangements corresponding to permutations of rows and columns.

A097696 Largest achievable determinant of a 4 X 4 matrix whose elements are the 16 consecutive integers n-15,...,n.

Original entry on oeis.org

7343, 8784, 12065, 16800, 21600, 26400, 31200, 36000, 40800, 45600, 50400, 55200, 60000, 64800, 69600, 74400, 79200, 84000, 88800, 93600, 98400, 103200, 108000, 112800, 117600, 122400, 127200, 132000, 136800, 141600, 146400, 151200, 156000
Offset: 8

Views

Author

Hugo Pfoertner, Aug 25 2004

Keywords

Crossrefs

Other maximal 4 X 4 determinants: Cf. A097694: 4 X 4 matrix filled with integers from 0...n, A097695: 4 X 4 matrix filled with integers from -n...n. A097399, A097401, A097693: corresponding sequences for 3 X 3 matrices. a(16)=A085000(4).

Formula

For n>10 an arrangement maximizing the determinant is of the following form: det((n, n-9, n-13, n-8), (n-12, n-1, n-11, n-5), (n-7, n-6, n-2, n-15), (n-10, n-14, n-4, n-3)) =2400*(2*n-15). a(n)=a(15-n) for n<8.
Empirical G.f.: x^8*(65*x^4+1454*x^3+1840*x^2-5902*x+7343) / (x-1)^2. [Colin Barker, Jan 10 2013]
Showing 1-4 of 4 results.