A097401
Largest achievable determinant of a 3 X 3 matrix whose elements are 9 distinct nonnegative integers chosen from the range 0..n.
Original entry on oeis.org
332, 528, 796, 1148, 1596, 2152, 2828, 3636, 4588, 5696, 6972, 8428, 10076, 11928, 13996, 16292, 18828, 21616, 24668, 27996, 31612, 35528, 39756, 44308, 49196, 54432, 60028, 65996, 72348, 79096, 86252, 93828, 101836, 110288, 119196, 128572
Offset: 8
a(10)=796 because no larger determinant of a 3 X 3 matrix b(j,k) with distinct elements 0 <= b(j,k) <= 10, j=1..3, k=1..3 can be built than det((10,5,1), (2,9,7), (6,0,8)) = 796.
Other maximal 3 X 3 determinants: Cf. a(8)=
A097399(4)=332: 3 X 3 matrix filled with consecutive integers,
A097693: 3 X 3 matrix filled with integers from -n...n,
A097694,
A097695,
A097696: corresponding sequences for 4 X 4 matrices.
-
I:=[332, 528, 796, 1148]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 25 2012
-
LinearRecurrence[{4,-6,4,-1},{332,528,796,1148},40] (* Vincenzo Librandi, Jun 25 2012 *)
-
a(n)=2*n^3-18*n^2+68*n-84 \\ Charles R Greathouse IV, Oct 07 2015
A097693
Largest achievable determinant of a 3 X 3 matrix whose elements are 9 distinct integers chosen from the range -n...n.
Original entry on oeis.org
86, 216, 438, 776, 1254, 1896, 2726, 3768, 5046, 6584, 8406, 10536, 12998, 15816, 19014, 22616, 26646, 31128, 36086, 41544, 47526, 54056, 61158, 68856, 77174, 86136, 95766, 106088, 117126, 128904, 141446, 154776, 168918, 183896, 199734
Offset: 4
a(5)=216 because no larger determinant of a 3 X 3 integer matrix b(j,k) with distinct elements -5<=b(j,k)<=5,j=1..3,k=1..3 can be built than det((-5,-4,1),(2,-2,5),(-3,4,3))=216.
Other maximal 3 X 3 determinants: Cf.
A097399: 3 X 3 matrix filled with consecutive integers,
A097401: 3 X 3 matrix filled with integers from 0...n,
A097694,
A097695,
A097696: corresponding sequences for 4 X 4 matrices.
A097695
Largest achievable determinant of a 4 X 4 matrix whose elements are 16 distinct integers chosen from the range -n...n.
Original entry on oeis.org
10324, 19920, 35791, 60122, 95610, 145362
Offset: 8
a(8)=10324 because no larger determinant of a 4 X 4 integer matrix b(j,k) with distinct elements -8<=b(j,k)<=8,j=1..4,k=1..4 can be built than
det((8,4,3,2),(-1,7,-4,-6),(5,-5,-7,-2),(1,-3,6,-8))=10324.
Other maximal 4 X 4 determinants: Cf.
A097694: 4 X 4 matrix filled with integers from 0...n,
A097696: 4 X 4 matrix filled with consecutive integers.
A097399,
A097401,
A097693: corresponding sequences for 3 X 3 matrices.
A097696
Largest achievable determinant of a 4 X 4 matrix whose elements are the 16 consecutive integers n-15,...,n.
Original entry on oeis.org
7343, 8784, 12065, 16800, 21600, 26400, 31200, 36000, 40800, 45600, 50400, 55200, 60000, 64800, 69600, 74400, 79200, 84000, 88800, 93600, 98400, 103200, 108000, 112800, 117600, 122400, 127200, 132000, 136800, 141600, 146400, 151200, 156000
Offset: 8
Other maximal 4 X 4 determinants: Cf.
A097694: 4 X 4 matrix filled with integers from 0...n,
A097695: 4 X 4 matrix filled with integers from -n...n.
A097399,
A097401,
A097693: corresponding sequences for 3 X 3 matrices. a(16)=
A085000(4).
Showing 1-4 of 4 results.
Comments