A097399
Maximum of the determinant over all permutations of the entries of a 3 X 3 matrix which are consecutive integers in the range (n-4,n+4).
Original entry on oeis.org
86, 104, 172, 252, 332, 412, 492, 572, 652, 732, 812, 892, 972, 1053, 1134, 1215, 1296, 1377, 1458, 1539, 1620, 1701, 1782, 1863, 1944, 2025, 2106, 2187, 2268, 2349, 2430, 2511, 2592, 2673, 2754, 2835, 2916, 2997, 3078, 3159, 3240, 3321, 3402, 3483, 3564
Offset: 0
a(0)=86 because the maximal determinant that can achieved using the consecutive integers -4,-3,-2,-1,0,1,2,3,4 as matrix elements of a 3 X 3 matrix is det((-4,-3,0),(1,-1,4),(-2,3,2))=86. Another example for a(5)=412 is given in A085000.
Cf.
A097400 = corresponding number of different determinants,
A097401,
A097693 = maximum of determinant if distinct matrix elements are selected from given range, a(5)=
A085000(3) maximal determinant with elements (1..n^2).
-
Join[{86,104,172,252,332,412,492,572,652,732,812,892},LinearRecurrence[ {2,-1},{972,1053},40]] (* or *) Table[ Det[ Partition[ #,3]]&/@ Permutations[ Range[n-4,n+4]]//Max,{n,0,45}] (* Harvey P. Dale, Jan 14 2015 *)
A097401
Largest achievable determinant of a 3 X 3 matrix whose elements are 9 distinct nonnegative integers chosen from the range 0..n.
Original entry on oeis.org
332, 528, 796, 1148, 1596, 2152, 2828, 3636, 4588, 5696, 6972, 8428, 10076, 11928, 13996, 16292, 18828, 21616, 24668, 27996, 31612, 35528, 39756, 44308, 49196, 54432, 60028, 65996, 72348, 79096, 86252, 93828, 101836, 110288, 119196, 128572
Offset: 8
a(10)=796 because no larger determinant of a 3 X 3 matrix b(j,k) with distinct elements 0 <= b(j,k) <= 10, j=1..3, k=1..3 can be built than det((10,5,1), (2,9,7), (6,0,8)) = 796.
Other maximal 3 X 3 determinants: Cf. a(8)=
A097399(4)=332: 3 X 3 matrix filled with consecutive integers,
A097693: 3 X 3 matrix filled with integers from -n...n,
A097694,
A097695,
A097696: corresponding sequences for 4 X 4 matrices.
-
I:=[332, 528, 796, 1148]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 25 2012
-
LinearRecurrence[{4,-6,4,-1},{332,528,796,1148},40] (* Vincenzo Librandi, Jun 25 2012 *)
-
a(n)=2*n^3-18*n^2+68*n-84 \\ Charles R Greathouse IV, Oct 07 2015
A097694
Largest achievable determinant of a 4 X 4 matrix whose elements are 16 distinct nonnegative integers chosen from the range 0...n.
Original entry on oeis.org
36000, 50736, 69828, 94092, 124699, 162604, 208697, 264094, 329983, 407624, 498349, 603562
Offset: 15
a(18)=94092 because no 4 X 4 matrix b(j,k) with distinct elements 0<=b(j,k)<=18,j=1..4,k=1..4 can be built that has a larger determinant than
det((18,6,2,10),(3,17,4,13),(11,12,16,0),(5,1,14,15))=94092.
Other maximal 4 X 4 determinants: Cf.
A097696: 4 X 4 matrix filled with consecutive integers,
A097695: 4 X 4 matrix filled with integers from -n...n,
A097399,
A097401,
A097693: corresponding sequences for 3 X 3 matrices,
A085000: n X n matrix filled with consecutive integers 1...n^2.
A097695
Largest achievable determinant of a 4 X 4 matrix whose elements are 16 distinct integers chosen from the range -n...n.
Original entry on oeis.org
10324, 19920, 35791, 60122, 95610, 145362
Offset: 8
a(8)=10324 because no larger determinant of a 4 X 4 integer matrix b(j,k) with distinct elements -8<=b(j,k)<=8,j=1..4,k=1..4 can be built than
det((8,4,3,2),(-1,7,-4,-6),(5,-5,-7,-2),(1,-3,6,-8))=10324.
Other maximal 4 X 4 determinants: Cf.
A097694: 4 X 4 matrix filled with integers from 0...n,
A097696: 4 X 4 matrix filled with consecutive integers.
A097399,
A097401,
A097693: corresponding sequences for 3 X 3 matrices.
A097696
Largest achievable determinant of a 4 X 4 matrix whose elements are the 16 consecutive integers n-15,...,n.
Original entry on oeis.org
7343, 8784, 12065, 16800, 21600, 26400, 31200, 36000, 40800, 45600, 50400, 55200, 60000, 64800, 69600, 74400, 79200, 84000, 88800, 93600, 98400, 103200, 108000, 112800, 117600, 122400, 127200, 132000, 136800, 141600, 146400, 151200, 156000
Offset: 8
Other maximal 4 X 4 determinants: Cf.
A097694: 4 X 4 matrix filled with integers from 0...n,
A097695: 4 X 4 matrix filled with integers from -n...n.
A097399,
A097401,
A097693: corresponding sequences for 3 X 3 matrices. a(16)=
A085000(4).
Showing 1-5 of 5 results.
Comments