cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097712 Lower triangular matrix T, read by rows, such that T(n,0) = 1 and T(n,k) = T(n-1,k) + T^2(n-1,k-1) for k>0, where T^2 is the matrix square of T.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 8, 7, 1, 1, 25, 44, 15, 1, 1, 111, 346, 208, 31, 1, 1, 809, 4045, 3720, 912, 63, 1, 1, 10360, 77351, 99776, 35136, 3840, 127, 1, 1, 236952, 2535715, 4341249, 2032888, 308976, 15808, 255, 1, 1, 9708797, 145895764, 319822055, 189724354, 37329584, 2608864, 64256, 511, 1
Offset: 0

Views

Author

Paul D. Hanna, Aug 24 2004

Keywords

Comments

This triangle has the same row sums and first column terms as in rows 2^n, for n>=0, of triangle A093662.

Examples

			T(5,1) = T(4,1) + T^2(4,0) = 25 + 86 = 111.
T(5,2) = T(4,2) + T^2(4,1) = 44 + 302 = 346.
T(5,3) = T(4,3) + T^2(4,2) = 15 + 193 = 208.
Rows of T begin:
  1;
  1,      1;
  1,      3,       1;
  1,      8,       7,       1;
  1,     25,      44,      15,       1;
  1,    111,     346,     208,      31,      1;
  1,    809,    4045,    3720,     912,     63,     1;
  1,  10360,   77351,   99776,   35136,   3840,   127,   1;
  1, 236952, 2535715, 4341249, 2032888, 308976, 15808, 255, 1;
Rows of T^2 begin:
       1;
       2,       1;
       5,       6,       1;
      17,      37,      14,       1;
      86,     302,     193,      30,      1;
     698,    3699,    3512,     881,     62,     1;
    9551,   73306,   96056,   34224,   3777,   126,   1;
  226592, 2458364, 4241473, 1997752, 305136, 15681, 254, 1;
Column 0 of T^2 forms A016121.
Row sums of T^2 form the first differences of A016121.
		

Crossrefs

Cf. A016121 (row sums), A093662, A097710, A097713.

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = If[n < 0 || k > n, 0, If[n == k, 1, If[k == 0, 1, T[n - 1, k] + Sum[T[n - 1, j] T[j, k - 1], {j, 0, n - 1}]]]];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 02 2019 *)
  • PARI
    T(n,k)=if(n<0 || k>n,0,if(n==k,1,if(k==0,1, T(n-1,k)+sum(j=0,n-1,T(n-1,j)*T(j,k-1));)))
    
  • SageMath
    @CachedFunction
    def T(n,k): # T = A097712
        if k<0 or k>n: return 0
        elif k==0 or k==n: return 1
        else: return T(n-1,k) + sum(T(n-1,j)*T(j,k-1) for j in range(n))
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 20 2024

Formula

T(n, k) = T(n-1, k) + Sum_{j=0..n-1} T(n-1, j)*T(j, k-1), with T(n, 0) = T(n, n) = 1.
T(n, 1) = A097713(n-1), n >= 1.
Sum_{k=0..n} T(n, k) = A016121(n) (row sums).