cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097723 One fourth of sum of divisors of 4n+3.

Original entry on oeis.org

1, 2, 3, 6, 5, 6, 10, 8, 12, 14, 11, 12, 18, 18, 15, 26, 17, 18, 31, 20, 21, 30, 28, 30, 39, 26, 27, 38, 36, 36, 42, 32, 33, 60, 35, 42, 57, 38, 48, 54, 41, 42, 65, 62, 45, 62, 54, 48, 84, 50, 60, 78, 53, 66, 74, 56, 57, 96, 72, 60, 91, 70, 63, 108, 76, 66, 90, 68, 93, 104, 71, 84, 98
Offset: 0

Views

Author

N. J. A. Sloane, Sep 11 2004

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + 2*x + 3*x^2 + 6*x^3 + 5*x^4 + 6*x^5 + 10*x^6 + 8*x^7 + 12*x^8 + ...
q^3 + 2*q^7 + 3*q^11 + 6*q^15 + 5*q^19 + 6*q^23 + 10*q^27 + 8*q^31 + ...
		

References

  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 76, Eq. (31.54).

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[1, 4n+3]/4, {n, 0, 72}] (* Jean-François Alcover, Nov 30 2015 *)
  • PARI
    {a(n) = if( n<0, 0, sigma(4*n + 3) / 4)} /* Michael Somos, Jul 05 2006 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^4 + A)^2 / eta(x + A))^2, n))} /* Michael Somos, Jul 05 2006 */

Formula

Euler transform of period 4 sequence [2, 0, 2, -4, ...]. - Vladeta Jovovic, Sep 14 2004
Expansion of q^(-3/4) * eta^2(q^2) * eta^4(q^4) / eta^2(q) in powers of q. - Michael Somos, Jul 05 2006
Expansion of q^(-3/2) * (theta_2(q) * theta_2(q^2))^2 / 16 in powers of q^2. - Michael Somos, Jul 05 2006
Expansion of (psi(x) * psi(x^2))^2 in powers of x where psi() is a Ramanujan theta function.
a(n) = sigma(4*n + 3) / 4 = A000203(4*n + 3) / 4.
a(n) = number of solutions of 8*n + 6 = x^2 + y^2 + 2*z^2 + 2*w^2 in positive odd integers.
a(n) = number of representations of n as the sum of two triangular numbers and twice two triangular numbers. - Michael Somos, Jul 05 2006
G.f.: (Product_{k>0} (1 - x^(4*k))^2 / (1 - x^(2*k - 1)))^2.
a(n) = A000203(A004767(n))/4. - Michel Marcus, Nov 30 2015
Sum_{k=0..n} a(k) = (Pi^2/16) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 17 2022