cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097727 Pell equation solutions (5*b(n))^2 - 26*a(n)^2 = -1 with b(n)=A097726(n), n >= 0.

Original entry on oeis.org

1, 101, 10301, 1050601, 107151001, 10928351501, 1114584702101, 113676711262801, 11593909964103601, 1182465139627304501, 120599850332020955501, 12300002268726510156601, 1254479631559772015017801, 127944622416828019021659101, 13049097006884898168194210501
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Comments

Hypotenuses of primitive Pythagorean triples in A195622 and A195623. - Clark Kimberling, Sep 22 2011

Examples

			(x,y) = (5,1), (515,101), (52525,10301), ... give the positive integer solutions to x^2 - 26*y^2 =-1.
		

Crossrefs

Cf. A097725 for S(n, 102).
Row 5 of array A188647.

Programs

  • GAP
    a:=[1,101];; for n in [3..20] do a[n]:=102*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 01 2019
  • Magma
    I:=[1,101]; [n le 2 select I[n] else 102*Self(n-1) - Self(n-2): n in [1..20]]; // G. C. Greubel, Aug 01 2019
    
  • Mathematica
    LinearRecurrence[{102,-1},{1,101},20] (* Harvey P. Dale, Apr 12 2014 *)
    CoefficientList[Series[(1-x)/(1-102x+x^2), {x,0,20}], x] (* Vincenzo Librandi, Apr 13 2014 *)
  • PARI
    my(x='x+O('x^20)); Vec((1-x)/(1-102*x+x^2)) \\ G. C. Greubel, Aug 01 2019
    
  • Sage
    ((1-x)/(1-102*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019
    

Formula

a(n) = S(n, 2*51) - S(n-1, 2*51) = T(2*n+1, sqrt(26))/sqrt(26), with Chebyshev polynomials of the 2nd and first kind. See A049310 for the triangle of S(n, x) = U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x); and A053120 for the T-triangle.
a(n) = ((-1)^n)*S(2*n, 10*i) with the imaginary unit i and Chebyshev polynomials S(n, x) with coefficients shown in A049310.
G.f.: (1-x)/(1-102*x+x^2).
a(n) = 102*a(n-1) - a(n-2) for n > 1; a(0)=1, a(1)=101. - Philippe Deléham, Nov 18 2008

Extensions

More terms from Harvey P. Dale, Apr 12 2014