A097737 Chebyshev U(n,x) polynomial evaluated at x=163.
1, 326, 106275, 34645324, 11294269349, 3681897162450, 1200287180689351, 391289939007565976, 127559319829285818825, 41583946974408169370974, 13556239154337233929118699, 4419292380366963852723324900
Offset: 0
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..397
- R. Flórez, R. A. Higuita, A. Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014).
- Tanya Khovanova, Recursive Sequences
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (326, -1).
Programs
-
Mathematica
LinearRecurrence[{326, -1},{1, 326},12] (* Ray Chandler, Aug 11 2015 *)
Formula
a(n) = 2*163*a(n-1) - a(n-2), n>=1, a(0)=1, a(-1):=0.
a(n) = S(n, 2*163)= U(n, 163), Chebyshev's polynomials of the second kind. See A049310.
a(n) = ((129+16*sqrt(65))^(n+1) - (129-16*sqrt(65))^(n+1))/(32*sqrt(65)), n>=0.
a(n)= sum((-1)^k*binomial(n-k, k)*326^(n-2*k), k=0..floor(n/2)), n>=0.
G.f.: 1/(1-326*x+x^2).
a(n) = ((163+18*sqrt(82))^(n+1) - (163-18*sqrt(82))^(n+1))/(36*sqrt(82)), n>=0.
Comments