cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A097739 Pell equation solutions (9*b(n))^2 - 82*a(n)^2 = -1 with b(n):=A097738(n), n >= 0.

Original entry on oeis.org

1, 325, 105949, 34539049, 11259624025, 3670602893101, 1196605283526901, 390089651826876625, 127168029890278252849, 41456387654578883552149, 13514655207362825759747725, 4405736141212626618794206201, 1436256467380108914901151473801, 468215202629774293631156586252925
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Examples

			(x,y) = (9*1=9;1), (2943=9*327;325), (959409=9*106601;105949), ... give the positive integer solutions to x^2 - 82*y^2 =-1.
		

Crossrefs

Cf. A097737 for S(n, 326).
Row 9 of array A188647.

Programs

  • GAP
    a:=[1,325];; for n in [3..20] do a[n]:=326*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 01 2019
  • Magma
    I:=[1,325]; [n le 2 select I[n] else 326*Self(n-1) - Self(n-2): n in [1..20]]; // G. C. Greubel, Aug 01 2019
    
  • Mathematica
    LinearRecurrence[{326, -1},{1, 325},12] (* Ray Chandler, Aug 12 2015 *)
  • PARI
    my(x='x+O('x^20)); Vec((1-x)/(1-326*x+x^2)) \\ G. C. Greubel, Aug 01 2019
    
  • Sage
    ((1-x)/(1-326*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019
    

Formula

a(n) = S(n, 2*163) - S(n-1, 2*163) = T(2*n+1, sqrt(82))/sqrt(82), with Chebyshev polynomials of the 2nd and first kind. See A049310 for the triangle of S(n, x)= U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x); and A053120 for the T-triangle.
a(n) = ((-1)^n)*S(2*n, 18*i) with the imaginary unit i and Chebyshev polynomials S(n, x) with coefficients shown in A049310.
G.f.: (1-x)/(1- 326*x+x^2).
a(n) = 326*a(n-1) - a(n-2), n > 1; a(0)=1, a(1)=325. - Philippe Deléham, Nov 18 2008

A097738 Pell equation solutions (9*a(n))^2 - 82*b(n)^2 = -1 with b(n):=A097739(n), n >= 0.

Original entry on oeis.org

1, 327, 106601, 34751599, 11328914673, 3693191431799, 1203969077851801, 392490226188255327, 127950609768293384801, 41711506294237455189799, 13597823101311642098489673, 4432848619521301086652443599, 1445095052140842842606598123601
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Examples

			(x,y) = (9*1=9;1), (2943=9*327;325), (959409=9*106601;105949), ... give the positive integer solutions to x^2 - 82*y^2 =-1.
		

Crossrefs

Cf. A097737 for S(n, 2*163).
Cf. similar sequences of the type (1/k)*sinh((2*n+1)*arcsinh(k)) listed in A097775.

Programs

  • Magma
    a:=[1,327]; [n le 2 select a[n] else 326*Self(n-1) - Self(n-2): n in [1..13]]; // Marius A. Burtea, Jan 23 2020
    
  • Magma
    R:=PowerSeriesRing(Integers(), 13); Coefficients(R!( (1 + x)/(1 - 2*163*x + x^2))); // Marius A. Burtea, Jan 23 2020
  • Mathematica
    LinearRecurrence[{326, -1}, {1, 327}, 12] (* Ray Chandler, Aug 12 2015 *)
  • PARI
    x='x+O('x^99); Vec((1+x)/(1-2*163*x+x^2)) \\ Altug Alkan, Apr 05 2018
    

Formula

G.f.: (1 + x)/(1 - 2*163*x + x^2).
a(n) = S(n, 2*163) + S(n-1, 2*163) = S(2*n, 2*sqrt(82)), with Chebyshev polynomials of the 2nd kind. See A049310 for the triangle of S(n, x) = U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x).
a(n) = ((-1)^n)*T(2*n+1, 9*i)/(9*i) with the imaginary unit i and Chebyshev polynomials of the first kind. See the T-triangle A053120.
a(n) = 326*a(n-1) - a(n-2), n>1; a(0)=1, a(1)=327. - Philippe Deléham, Nov 18 2008
a(n) = (1/9)*sinh((2*n + 1)*arcsinh(9)). - Bruno Berselli, Apr 03 2018
Showing 1-2 of 2 results.