cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A097767 Pell equation solutions (11*b(n))^2 - 122*a(n)^2 = -1 with b(n):=A097766(n), n >= 0.

Original entry on oeis.org

1, 485, 235709, 114554089, 55673051545, 27056988496781, 13149640736384021, 6390698340894137425, 3105866244033814404529, 1509444603902092906463669, 733586971630173118726938605, 356521758767660233608385698361
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Examples

			(x,y) = (11*1=11;1), (5357=11*487;485), (2603491=11*236681;235709), ... give the positive integer solutions to x^2 - 122*y^2 =-1.
		

Crossrefs

Cf. A097765 for S(n, 486).
Row 11 of array A188647.

Programs

  • GAP
    a:=[1,485];; for n in [3..20] do a[n]:=486*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 01 2019
  • Magma
    I:=[1,485]; [n le 2 select I[n] else 486*Self(n-1) - Self(n-2): n in [1..20]]; // G. C. Greubel, Aug 01 2019
    
  • Mathematica
    LinearRecurrence[{486, -1},{1, 485},20] (* Ray Chandler, Aug 12 2015 *)
  • PARI
    my(x='x+O('x^20)); Vec((1-x)/(1-486*x+x^2)) \\ G. C. Greubel, Aug 01 2019
    
  • Sage
    ((1-x)/(1-486*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019
    

Formula

a(n) = S(n, 2*243) - S(n-1, 2*243) = T(2*n+1, sqrt(122))/sqrt(122), with Chebyshev polynomials of the 2nd and first kind. See A049310 for the triangle of S(n, x)= U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x); and A053120 for the T-triangle.
a(n) = ((-1)^n)*S(2*n, 22*i) with the imaginary unit i and Chebyshev polynomials S(n, x) with coefficients shown in A049310.
G.f.: (1-x)/(1-486*x+x^2).
a(n) = 486*a(n-1) - a(n-2), n > 1; a(0)=1, a(1)=485. - Philippe Deléham, Nov 18 2008

A097766 Pell equation solutions (11*a(n))^2 - 122*b(n)^2 = -1 with b(n):=A097767(n), n >= 0.

Original entry on oeis.org

1, 487, 236681, 115026479, 55902632113, 27168564180439, 13203866289061241, 6417051847919582687, 3118673994222628124641, 1515669144140349348992839, 736612085378215560982395113, 357991957824668622288095032079, 173983354890703572216453203195281
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Examples

			(x,y) = (11*1=11;1), (5357=11*487;485), (2603491=11*236681;235709), ... give the positive integer solutions to x^2 - 122*y^2 =-1.
		

Crossrefs

Cf. A097765 for S(n, 2*243).
Cf. similar sequences of the type (1/k)*sinh((2*n+1)*arcsinh(k)) listed in A097775.

Programs

  • Mathematica
    LinearRecurrence[{486, -1},{1, 487},12] (* Ray Chandler, Aug 12 2015 *)
  • PARI
    x='x+O('x^99); Vec((1+x)/(1-2*243*x+x^2)) \\ Altug Alkan, Apr 05 2018

Formula

G.f.: (1 + x)/(1 - 2*243*x + x^2).
a(n) = S(n, 2*243) + S(n-1, 2*243) = S(2*n, 2*sqrt(122)), with Chebyshev polynomials of the second kind. See A049310 for the triangle of S(n, x)= U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x).
a(n) = ((-1)^n)*T(2*n+1, 11*i)/(11*i) with the imaginary unit i and Chebyshev polynomials of the first kind. See the T-triangle A053120.
a(n) = 486*a(n-1) - a(n-2), n > 1; a(0)=1, a(1)=487. - Philippe Deléham, Nov 18 2008
a(n) = (1/11)*sinh((2*n + 1)*arcsinh(11)). - Bruno Berselli, Apr 03 2018
Showing 1-2 of 2 results.