A097780 Chebyshev polynomials S(n,25) with Diophantine property.
1, 25, 624, 15575, 388751, 9703200, 242191249, 6045078025, 150884759376, 3766073906375, 94000962899999, 2346257998593600, 58562449001940001, 1461714967049906425, 36484311727245720624, 910646078214093109175
Offset: 0
Examples
(x,y) = (2,0), (25;1), (623;25), (15550;624), ... give the nonnegative integer solutions to x^2 - 69*(3*y)^2 =+4.
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..714
- Tanya Khovanova, Recursive Sequences
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (25,-1).
Programs
-
Mathematica
LinearRecurrence[{25,-1},{1,25},20] (* Harvey P. Dale, Aug 23 2021 *)
-
Sage
[lucas_number1(n,25,1) for n in range(1,20)] # Zerinvary Lajos, Jun 25 2008
Formula
a(n) = S(n, 25)=U(n, 25/2) = S(2*n+1, sqrt(25))/sqrt(25) with S(n, x)=U(n, x/2) Chebyshev's polynomials of the 2nd kind, A049310. S(-1, x)= 0 = U(-1, x).
a(n) = 25*a(n-1)-a(n-2), n >= 1; a(0)=1, a(1)=25; a(-1)=0.
a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap := (25+3*sqrt(69))/2 and am := (25-3*sqrt(69))/2.
G.f.: 1/(1-25*x+x^2).
a(n) = Sum_{k, 0<=k<=n} A101950(n,k)*24^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = 1/23*(23 + 3*sqrt(69)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = 1/50*(23 + 3*sqrt(69)). - Peter Bala, Dec 23 2012
Comments