A097793 McKay-Thompson series of class 56B for the Monster group.
1, 1, 1, 2, 2, 3, 4, 4, 5, 7, 8, 10, 12, 14, 17, 21, 24, 28, 34, 39, 46, 53, 61, 71, 82, 94, 108, 124, 142, 162, 185, 210, 238, 271, 306, 345, 390, 439, 494, 556, 623, 698, 783, 875, 977, 1092, 1216, 1354, 1508, 1674, 1859, 2064, 2286, 2532, 2803, 3098, 3424
Offset: 0
Keywords
Examples
1 + x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 4*x^7 + 5*x^8 + 7*x^9 + 8*x^10 +... T56B = 1/q + q^3 + q^7 + 2q^11 + 2q^15 + 3q^19 + 4q^23 + 4q^27 +...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 12.
- Index entries for McKay-Thompson series for Monster simple group
Crossrefs
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Product[(1 + x^k) / (1 + x^(7*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2015 *) QP = QPochhammer; s = QP[q^2]*(QP[q^7]/(QP[q]*QP[q^14])) + O[q]^60; CoefficientList[s, q] (* Jean-François Alcover, Nov 12 2015 *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( prod( k=1, n, 1 + x^k, 1 + A) / prod( k=1, n\7, 1 + x^(7*k), 1 + A), n))}
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^7 + A) / (eta(x + A) * eta(x^14 + A)), n))}
Formula
Euler transform of period 14 sequence [ 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, ...].
Expansion of q^(1/4) * eta(q^2) * eta(q^7) / (eta(q) * eta(q^14)) in powers of q.
G.f.: Product_{k>0} (1 + x^k) / (1 + x^(7*k)).
a(n) ~ exp(Pi*sqrt(2*n/7)) / (2 * 14^(1/4) * n^(3/4)) * (1 - (3*sqrt(7)/ (8*Pi*sqrt(2)) + Pi/(4*sqrt(14))) / sqrt(n)). - Vaclav Kotesovec, Aug 31 2015, extended Jan 21 2017
Comments