cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097809 a(n) = 5*2^n - 2*n - 4.

Original entry on oeis.org

1, 4, 12, 30, 68, 146, 304, 622, 1260, 2538, 5096, 10214, 20452, 40930, 81888, 163806, 327644, 655322, 1310680, 2621398, 5242836, 10485714, 20971472, 41942990, 83886028, 167772106, 335544264, 671088582, 1342177220, 2684354498
Offset: 0

Views

Author

Paul Barry, Aug 25 2004

Keywords

Comments

Rows sums of the infinite triangle defined by T(n,n) = 1, T(n,0) = n*(n+1) + 1 for n=0, 1, 2, ... and interior terms defined by the Pascal-type recurrence T(n,k) = T(n-1,k-1) +T(n-1,k): Sum_{k=0..n} T(n,k) = a(n). T is apparently obtained by deleting the first two columns of A129687. - J. M. Bergot, Feb 23 2013

Crossrefs

Programs

  • Magma
    [5*2^n-2*n-4: n in [0..30]]; // Vincenzo Librandi, Feb 24 2013
    
  • Mathematica
    LinearRecurrence[{4,-5,2},{1,4,12},30] (* Harvey P. Dale, Oct 11 2018 *)
  • Sage
    [5*2^n -2*(n+2) for n in (0..30)] # G. C. Greubel, Dec 30 2021

Formula

G.f.: (1+x^2)/((1-x)^2*(1-2*x)).
a(n) = 2*a(n-1) + 2*n, n>0.
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3), with a(0)=1, a(1)=4, a(2)=12.
E.g.f.: 5*exp(2*x) - 2*(2+x)*exp(x). - G. C. Greubel, Dec 30 2021