A097823 Numbers n such that n^2+n+41 (Euler's "prime generating polynomial") is not squarefree.
40, 603, 798, 890, 917, 1245, 1253, 1318, 1640, 1651, 1721, 2010, 2069, 2251, 2452, 2606, 2649, 3094, 3099, 3321, 3402, 3527, 3607, 4123, 4239, 4301, 4819, 4943, 5002, 5083, 5308, 5372, 5425, 5736, 5790, 5930, 5958, 5998, 6150, 6416, 6511, 6683, 6764
Offset: 1
Keywords
Examples
a(1)=40: p(40)=40^2+40+41=1681=41^2, a(2)=603: p(603)=364253=197*43^2, a(11)=1721: p(1721)=2963603=43*41^3, a(68)=10428: p(10428)=108753653=743^2*197, a(91)=14144: p(14144)=200066921=47^4*41.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Prime-Generating Polynomial
Crossrefs
Programs
-
Mathematica
Select[Range[10000],!SquareFreeQ[#^2+#+41]&] (* Harvey P. Dale, Nov 06 2011 *)