A097822 Numbers n such that n^2+n+41 (Euler's "prime generating polynomial") has more than 2 prime factors.
420, 431, 491, 492, 514, 533, 573, 574, 603, 614, 655, 686, 738, 775, 798, 858, 861, 890, 895, 901, 904, 917, 919, 942, 984, 989, 1025, 1059, 1116, 1130, 1162, 1169, 1188, 1215, 1222, 1224, 1245, 1251, 1253, 1268, 1271, 1318, 1321, 1334, 1365, 1374, 1407
Offset: 1
Keywords
Examples
a(1)=420 because 420^2+420+41=176861=71*53*47 is the first n for which p(n)=n^2+n+41 has more than 2 prime factors. For all smaller n p(n) is either prime or semiprime.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..5000
- Eric Weisstein's World of Mathematics, Prime-Generating Polynomial
Programs
-
Mathematica
Select[Range[1500],PrimeOmega[#^2+#+41]>2&] (* Harvey P. Dale, Dec 26 2017 *)
-
PARI
isok(n) = #factor(n^2+n+41)~ > 2; \\ Michel Marcus, Sep 07 2017
Extensions
Corrected a(19) by Hugo Pfoertner, Sep 07 2017
Comments