A260679 a(n) = n + (17 - n)^2.
257, 227, 199, 173, 149, 127, 107, 89, 73, 59, 47, 37, 29, 23, 19, 17, 17, 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257, 289, 323, 359, 397, 437, 479, 523, 569, 617, 667, 719, 773, 829, 887, 947, 1009, 1073, 1139, 1207, 1277, 1349, 1423, 1499, 1577, 1657
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[n+(17-n)^2: n in [1..70]]; // Vincenzo Librandi, Nov 16 2015
-
Mathematica
Table[n + (17 - n)^2, {n, 70}] (* Vincenzo Librandi, Nov 16 2015 *) LinearRecurrence[{3,-3,1},{257,227,199},60] (* Harvey P. Dale, May 12 2019 *)
-
PARI
for(n=1,99,print1(n+(17-n)^2,","))
Formula
G.f.: x*(257 - 544*x + 289*x^2)/(1 - x)^3.
From Elmo R. Oliveira, Feb 11 2025: (Start)
E.g.f.: exp(x)*(x^2 - 32*x + 289) - 289.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
Comments