A242702 Semiprimes n such that n^2+n+41 is also semiprime.
49, 65, 82, 87, 91, 121, 122, 123, 143, 155, 159, 161, 178, 185, 187, 201, 205, 209, 213, 215, 217, 218, 237, 249, 259, 265, 278, 287, 289, 291, 295, 298, 299, 301, 302, 309, 314, 321, 326, 327, 329, 334, 361, 381, 395, 407, 422, 427, 445, 451, 454, 466, 471
Offset: 1
Keywords
Examples
65 = 5 * 13 is semiprime and 65^2 + 65 + 41 = 4331 = 61 * 71 is also semiprime so 65 is in the sequence. 87 = 3 * 29 is semiprime and 87^2 + 87 + 41 = 7697 = 43 * 179 is also semiprime so 87 is in the sequence. 6 = 2 * 3 is semiprime but 6^2+6+41 = 83 is prime (not semiprime) so 6 is not in the sequence.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): A242702:= proc(); if bigomega(n)=2 and bigomega(n^2+n+41)=2 then RETURN (n); fi; end: seq(A242702 (), n=1..1000);
-
Mathematica
c = 0; Do[If [PrimeOmega[n] == 2 && PrimeOmega[n^2 + n + 41] == 2, c++; Print[c, " ", n]], {n, 1, 10^5}]; Select[Range[500],PrimeOmega[#]==PrimeOmega[#^2+#+41]==2&] (* Harvey P. Dale, Nov 07 2016 *)
Comments