cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A088316 a(n) = 13*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 13.

Original entry on oeis.org

2, 13, 171, 2236, 29239, 382343, 4999698, 65378417, 854919119, 11179326964, 146186169651, 1911599532427, 24996980091202, 326872340718053, 4274337409425891, 55893258663254636, 730886700031736159, 9557420359075824703, 124977351368017457298, 1634262988143302769577
Offset: 0

Views

Author

Nikolay V. Kosinov, Dmitry V. Polyakov (kosinov(AT)unitron.com.ua), Nov 06 2003

Keywords

Comments

For more information about this type of recurrence follow the Khovanova link and see A086902 and A054413. - Johannes W. Meijer, Jun 12 2010

Crossrefs

Programs

  • Magma
    I:=[2,13]; [n le 2 select I[n] else 13*Self(n-1) +Self(n-2): n in [1..31]]; // G. C. Greubel, Dec 13 2022
    
  • Mathematica
    LinearRecurrence[{13,1}, {2,13}, 31] (* Stefano Spezia, Sep 20 2022 *)
  • SageMath
    A088316=BinaryRecurrenceSequence(13,1,2,13)
    [A088316(n) for n in range(31)] # G. C. Greubel, Dec 13 2022

Formula

a(n) = ((13+sqrt(173))/2)^n + ((13-sqrt(173))/2)^n.
Lim_{n -> oo} a(n+1)/a(n) = (13 + sqrt(173))/2.
Lim_{n -> oo} a(n)/a(n+1) = 2/(13+sqrt(173)).
G.f.: (2-13*x)/(1-13*x-x^2). - Philippe Deléham, Nov 02 2008
From Johannes W. Meijer, Jun 12 2010: (Start)
a(2*n+1) = 13*A097845(n).
a(3*n+1) = A041318(5n), a(3n+2) = A041318(5n+3), a(3n+3) = 2*A041318(5n+4).
Limit_{k->oo} a(n+k)/a(k) = (A088316(n) + A140455(n)*sqrt(173))/2.
Limit_{n->oo} A088316(n)/A140455(n) = sqrt(173). (End)

A098244 First differences of Chebyshev polynomials S(n,171)=A097844(n) with Diophantine property.

Original entry on oeis.org

1, 170, 29069, 4970629, 849948490, 145336221161, 24851643870041, 4249485765555850, 726637214266180309, 124250714153751276989, 21246145483077202184810, 3632966626892047822325521, 621216047053057100415479281, 106224311079445872123224631530
Offset: 0

Views

Author

Wolfdieter Lang, Sep 10 2004

Keywords

Comments

(13*b(n))^2 - 173*a(n)^2 = -4 with b(n)=A097845(n) give all positive solutions of this Pell equation.

Examples

			All positive solutions of Pell equation x^2 - 173*y^2 = -4 are (13=13*1,1), (2236=13*172,170), (382343=13*29411,29069), (65378417=13*5029109,4970629), ...
		

Programs

  • GAP
    a:=[1,170];; for n in [3..20] do a[n]:=171*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 01 2019
  • Magma
    I:=[1,170]; [n le 2 select I[n] else 171*Self(n-1) - Self(n-2): n in [1..20]]; // G. C. Greubel, Aug 01 2019
    
  • Mathematica
    LinearRecurrence[{171,-1}, {1,170}, 20] (* G. C. Greubel, Aug 01 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1-x)/(1-171*x+x^2)) \\ G. C. Greubel, Aug 01 2019
    
  • Sage
    ((1-x)/(1-171*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019
    

Formula

a(n) = ((-1)^n)*S(2*n, 13*i) with the imaginary unit i and the S(n, x) = U(n, x/2) Chebyshev polynomials.
G.f.: (1-x)/(1-171*x+x^2).
a(n) = S(n, 171) - S(n-1, 171) = T(2*n+1, sqrt(173)/2)/(sqrt(173)/2), with S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x) = 0 = U(-1, x) and T(n, x) Chebyshev's polynomials of the first kind, A053120.
a(n) = 171*a(n-1) - a(n-2), n > 1; a(0)=1, a(1)=170. - Philippe Deléham, Nov 18 2008

A097844 Chebyshev polynomials S(n,171).

Original entry on oeis.org

1, 171, 29240, 4999869, 854948359, 146191169520, 24997835039561, 4274483600595411, 730911697866775720, 124981625851618052709, 21371127108928820237519, 3654337754000976642563040, 624870384807058077058042321, 106849181464252930200282673851
Offset: 0

Views

Author

Wolfdieter Lang, Sep 10 2004

Keywords

Comments

Used for all positive integer solutions of Pell equation x^2 - 173*y^2 = -4. See A097845 with A098244.

Crossrefs

Programs

  • GAP
    a:=[1,171];; for n in [3..30] do a[n]:=171*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 14 2019
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/(1-171*x+x^2) )); // G. C. Greubel, Jan 14 2019
    
  • Mathematica
    CoefficientList[Series[1/(1-171x+x^2),{x,0,30}],x] (* or *) LinearRecurrence[{171,-1},{1,171},30] (* Harvey P. Dale, Mar 21 2013 *)
  • PARI
    my(x='x+O('x^30)); Vec(1/(1-171*x+x^2)) \\ G. C. Greubel, Jan 14 2019
    
  • Sage
    (1/(1-171*x+x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 14 2019
    

Formula

a(n) = S(n, 171) = U(n, 171/2) = S(2*n+1, sqrt(173))/sqrt(173) with S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x) = 0 = U(-1, x).
a(n) = 171*a(n-1) - a(n-2), n >= 1, a(-1)=0, a(0)=1, a(1)=171.
a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap = (171+13*sqrt(173))/2 and am = (171-13*sqrt(173))/2 = 1/ap.
G.f.: 1/(1-171*x+x^2).
Showing 1-3 of 3 results.