A088316
a(n) = 13*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 13.
Original entry on oeis.org
2, 13, 171, 2236, 29239, 382343, 4999698, 65378417, 854919119, 11179326964, 146186169651, 1911599532427, 24996980091202, 326872340718053, 4274337409425891, 55893258663254636, 730886700031736159, 9557420359075824703, 124977351368017457298, 1634262988143302769577
Offset: 0
Nikolay V. Kosinov, Dmitry V. Polyakov (kosinov(AT)unitron.com.ua), Nov 06 2003
-
I:=[2,13]; [n le 2 select I[n] else 13*Self(n-1) +Self(n-2): n in [1..31]]; // G. C. Greubel, Dec 13 2022
-
LinearRecurrence[{13,1}, {2,13}, 31] (* Stefano Spezia, Sep 20 2022 *)
-
A088316=BinaryRecurrenceSequence(13,1,2,13)
[A088316(n) for n in range(31)] # G. C. Greubel, Dec 13 2022
A098244
First differences of Chebyshev polynomials S(n,171)=A097844(n) with Diophantine property.
Original entry on oeis.org
1, 170, 29069, 4970629, 849948490, 145336221161, 24851643870041, 4249485765555850, 726637214266180309, 124250714153751276989, 21246145483077202184810, 3632966626892047822325521, 621216047053057100415479281, 106224311079445872123224631530
Offset: 0
All positive solutions of Pell equation x^2 - 173*y^2 = -4 are (13=13*1,1), (2236=13*172,170), (382343=13*29411,29069), (65378417=13*5029109,4970629), ...
-
a:=[1,170];; for n in [3..20] do a[n]:=171*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 01 2019
-
I:=[1,170]; [n le 2 select I[n] else 171*Self(n-1) - Self(n-2): n in [1..20]]; // G. C. Greubel, Aug 01 2019
-
LinearRecurrence[{171,-1}, {1,170}, 20] (* G. C. Greubel, Aug 01 2019 *)
-
my(x='x+O('x^20)); Vec((1-x)/(1-171*x+x^2)) \\ G. C. Greubel, Aug 01 2019
-
((1-x)/(1-171*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019
A097844
Chebyshev polynomials S(n,171).
Original entry on oeis.org
1, 171, 29240, 4999869, 854948359, 146191169520, 24997835039561, 4274483600595411, 730911697866775720, 124981625851618052709, 21371127108928820237519, 3654337754000976642563040, 624870384807058077058042321, 106849181464252930200282673851
Offset: 0
- Indranil Ghosh, Table of n, a(n) for n = 0..446
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Tanya Khovanova, Recursive Sequences
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (171,-1).
-
a:=[1,171];; for n in [3..30] do a[n]:=171*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 14 2019
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/(1-171*x+x^2) )); // G. C. Greubel, Jan 14 2019
-
CoefficientList[Series[1/(1-171x+x^2),{x,0,30}],x] (* or *) LinearRecurrence[{171,-1},{1,171},30] (* Harvey P. Dale, Mar 21 2013 *)
-
my(x='x+O('x^30)); Vec(1/(1-171*x+x^2)) \\ G. C. Greubel, Jan 14 2019
-
(1/(1-171*x+x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 14 2019
Showing 1-3 of 3 results.
Comments