cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097861 Number of humps in all Motzkin paths of length n. (A hump is an upstep followed by 0 or more flatsteps followed by a downstep.)

Original entry on oeis.org

0, 0, 1, 3, 9, 25, 70, 196, 553, 1569, 4476, 12826, 36894, 106470, 308113, 893803, 2598313, 7567465, 22076404, 64498426, 188689684, 552675364, 1620567763, 4756614061, 13974168190, 41088418150, 120906613075, 356035078101, 1049120176953, 3093337815409
Offset: 0

Views

Author

Emeric Deutsch, Sep 01 2004

Keywords

Comments

If the independent variable x in the g.f. is subjected to the transformation x -> x/(1 + x + x^2), an inverse Motzkin transform, the 4-periodic sequence 0, 1, bar(2, 3, 2, 2) (offset 0) results, where bar(...) denotes the period. - R. J. Mathar, Nov 10 2008
Also, a(n) is the number of combinations of two disjoint subsets of equal size from a set of n items, where k, the size of the subset, goes from 1 to floor(n/2) inclusive. For each k, k items are chosen from n. Then k items are chosen from the remaining (n - k) items. Since each pair "kSubSet|kSubSet" is chosen twice, once as "A|B", once as "B|A", in order to remove repetitions, the number must be divided by 2. Since C(n, n + d) = 0 when d > 0, the upper limit can be safely increased from floor(n/2) to n. Thus a(n) = Sum_{k=1..n} C(n, k)*C(n-k, k)/2. - Viktar Karatchenia, Sep 09 2015

Examples

			a(3) = 3 because in all Motzkin paths of length 3 we have 3 humps, shown between parentheses: FFF, F(UD), (UD)F, (UFD) (here U = (1,1), F = (1,0), D = (1,-1)).
a(5) = (10 + 15) = 25 combinations of two equal size distinct subsets, i.e. given 5 items, there are 10 distinct pairs of size 1: "1|2, 1|3, 1|4, 1|5, and 2|3, 2|4, 2|5, and 3|4, 3|5, 4|5". Plus 15 distinct pairs of size 2: "12|34, 12|35, 12|45, and 13|24, 13|25, 13|45, and 14|23, 14|25, 14|35, and 15|23, 15|24, 15|34, and 23|45, 24|35, 25|34". - _Viktar Karatchenia_, Sep 09 2015
		

Crossrefs

Programs

  • Magma
    I := [0,0,1,3]; [n le 4 select I[n] else ((3*n^2-7*n+3)*Self(n-1)+(n-1)*(n-3)*Self(n-2)-3*(n-1)*(n-2)*Self(n-3))  div (n*(n-2)): n in [1..30]]; // Vincenzo Librandi, Sep 14 2015
    
  • Maple
    G := (1-z-sqrt(1-2*z-3*z^2))/2/(1-z)/sqrt(1-2*z-3*z^2):
    Gser := series(G, z=0, 33): seq(coeff(Gser, z^n), n = 0..32);
    # Alternative:
    a := n -> add(binomial(n,j)*binomial(n-j,j)/2, j=1..n):
    seq(a(n), n = 0..27); # Zerinvary Lajos, Sep 24 2006
    # Third program:
    Exp := (x, m) -> sum((x^k / k!)^m, k = 0..infinity):
    egf := Exp(2*x, 1)*(Exp(2*x, 2) - 1): ser := series(egf, x, 32):
    seq((1/2)*2^(-n)*n!*simplify(coeff(ser, x, n)), n = 0..29); # Peter Luschny, Jun 01 2021
  • Mathematica
    CoefficientList[Series[(1 - z - Sqrt[1 - 2 z - 3 z^2])/(2 (1 - z) Sqrt[1 - 2 z - 3 z^2]), {z, 0, 33}], z] (* Vincenzo Librandi, Sep 14 2015 *)
    a[n_] := (1/2)*(HypergeometricPFQ[{1/2 - n/2, -n/2}, {1}, 4] - 1);
    Table[a[n], {n, 0, 29}] (* Peter Luschny, Jun 01 2021 *)
  • Python
    from sympy import hyperexpand, S
    from sympy.functions import hyper
    def A097861(n): return hyperexpand(hyper(((1-n)*S.Half,-n*S.Half),(1,),4))-1>>1 # Chai Wah Wu, Jan 04 2024

Formula

G.f.: (1 - z - sqrt(1 - 2*z - 3*z^2))/(2*(1 - z)*sqrt(1 - 2*z - 3*z^2)).
From Vladeta Jovovic, Jul 24 2005: (Start)
a(n) = (A002426(n) - 1)/2.
E.g.f.: exp(x)*(BesselI(0, 2*x) - 1)/2. (End)
a(n) = Sum_{j=1..n} C(n, j)*C(n-j, j)/2. - Zerinvary Lajos, Sep 24 2006
n*(n - 2)*a(n) - (3*n^2 - 7*n + 3)*a(n-1) - (n - 1)*(n - 3)*a(n-2) + 3*(n - 1)*(n - 2)*a(n-3) = 0. - R. J. Mathar, Feb 21 2010
From Peter Luschny, Jun 01 2021: (Start)
a(n) = (1/2)*(hypergeom([1/2 - n/2, -n/2], [1], 4) - 1).
a(n) = (1/2)*2^(-n)*n!*[x^n] Exp(2*x, 1)*(Exp(2*x, 2) - 1), where Exp(x, m) = Sum_{k>=0} (x^k / k!)^m. Cf. A344559. (End)

Extensions

a(0) = 0 prepended by Peter Luschny, Jun 01 2021