cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097869 Expansion of g.f.: (1+x^4+x^5+x^9)/((1-x)*(1-x^2)*(1-x^4)^2).

Original entry on oeis.org

1, 1, 2, 2, 6, 7, 11, 12, 21, 25, 34, 38, 54, 63, 79, 88, 113, 129, 154, 170, 206, 231, 267, 292, 341, 377, 426, 462, 526, 575, 639, 688, 769, 833, 914, 978, 1078, 1159, 1259, 1340, 1461, 1561, 1682, 1782, 1926, 2047, 2191, 2312, 2481, 2625, 2794, 2938, 3134, 3303
Offset: 0

Views

Author

N. J. A. Sloane, Sep 02 2004

Keywords

Comments

Molien series for group of order 128 acting on joint weight enumerators of a pair of binary self-dual codes is (1+x^8+x^10+x^18)/((1-x^2)*(1-x^4)*(1-x^8)^2).

Crossrefs

Cf. A097870.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 55); Coefficients(R!( (1+x^4)*(1+x^5)/((1-x)*(1-x^2)*(1-x^4)^2) )); // G. C. Greubel, Feb 05 2020
    
  • Maple
    m:=55; S:=series((1+x^4)*(1+x^5)/((1-x)*(1-x^2)*(1-x^4)^2), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Feb 05 2020
  • Mathematica
    CoefficientList[Series[(1+x^4)*(1+x^5)/((1-x)*(1-x^2)*(1-x^4)^2), {x,0,55}], x] (* G. C. Greubel, Feb 05 2020 *)
    LinearRecurrence[{2,-1,0,2,-4,2,0,-1,2,-1},{1,1,2,2,6,7,11,12,21,25},60] (* Harvey P. Dale, Jun 19 2021 *)
  • PARI
    Vec( (1+x^4)*(1+x^5)/((1-x)*(1-x^2)*(1-x^4)^2) +O('x^55) ) \\ G. C. Greubel, Feb 05 2020
    
  • Sage
    def A097869_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x^4)*(1+x^5)/((1-x)*(1-x^2)*(1-x^4)^2) ).list()
    A097869_list(55) # G. C. Greubel, Feb 05 2020

Formula

G.f.: (1+x^4)*(1-x+x^2-x^3+x^4)/( (1+x)^2*(1+x^2)^2*(1-x)^4 ). - R. J. Mathar, Dec 18 2014
From Greg Dresden, Jun 22 2021: (Start)
a(2*n) = (1/48)*(30 + 18*(-1)^n + 64*n + 12*n^2 + 8*n^3),
a(2*n+1) = (1/48)*(36 + 12*(-1)^n + 16*n + 8*n^2)*(1 + n). (End)